Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 2 September 2008
Vol. 1, Issue 35, p. ra2
[DOI: 10.1126/scisignal.1159433]


Linear Motif Atlas for Phosphorylation-Dependent Signaling

Martin Lee Miller 1 , 2 *, Lars Juhl Jensen 2 , 3 *, Francesca Diella 3 , Claus Jørgensen 4 , Michele Tinti 5 , Lei Li 6 , Marilyn Hsiung 4 , Sirlester A. Parker 7 , Jennifer Bordeaux 7 , Thomas Sicheritz-Ponten 1 , Marina Olhovsky 4 , Adrian Pasculescu 4 , Jes Alexander 8 , Stefan Knapp 9 , Nikolaj Blom 1 , Peer Bork 2 , 10 , Shawn Li 6 , Gianni Cesareni 5 , Tony Pawson 4 , Benjamin E. Turk 7 , Michael B. Yaffe 8 {dagger} , Søren Brunak 1 , 2 {dagger} , and Rune Linding 4 , 8 , 11 {dagger}

1 Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark.
2 The Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark.
3 European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
4 Samuel Lunenfeld Research Institute, Mount Sinai Hospital, M5G 1X5 Toronto, Ontario, Canada.
5 University of Rome, Tor Vergata, 00133 Rome, Italy.
6 University of Western Ontario, N6A 5C1 London, Ontario, Canada.
7 Department of Pharmacology, Yale University School of Medicine, New Haven, 06520 CT, USA.
8 Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, 021329 MA, USA.
9 Structural Genomics Consortium, University of Oxford, OX3 7DQ Oxford, UK.
10 Max-Delbrück-Centre for Molecular Medicine, 13092 Berlin, Germany.
11 Cellular & Molecular Logic Team, The Institute of Cancer Research, SW3 6JB London, UK.

* These authors contributed equally to this work.

Abstract: Systematic and quantitative analysis of protein phosphorylation is revealing dynamic regulatory networks underlying cellular responses to environmental cues. However, matching these sites to the kinases that phosphorylate them and the phosphorylation-dependent binding domains that may subsequently bind to them remains a challenge. NetPhorest is an atlas of consensus sequence motifs that covers 179 kinases and 104 phosphorylation-dependent binding domains [Src homology 2 (SH2), phosphotyrosine binding (PTB), BRCA1 C-terminal (BRCT), WW, and 14–3–3]. The atlas reveals new aspects of signaling systems, including the observation that tyrosine kinases mutated in cancer have lower specificity than their non-oncogenic relatives. The resource is maintained by an automated pipeline, which uses phylogenetic trees to structure the currently available in vivo and in vitro data to derive probabilistic sequence models of linear motifs. The atlas is available as a community resource (

{dagger} To whom correspondence should be addressed. E-mail: brunak{at} (S.B.), myaffe{at} (M.B.Y.), and rune.linding{at} (R.L.)

Citation: M. L. Miller, L. J. Jensen, F. Diella, C. Jørgensen, M. Tinti, L. Li, M. Hsiung, S. A. Parker, J. Bordeaux, T. Sicheritz-Ponten, M. Olhovsky, A. Pasculescu, J. Alexander, S. Knapp, N. Blom, P. Bork, S. Li, G. Cesareni, T. Pawson, B. E. Turk, M. B. Yaffe, S. Brunak, R. Linding, Linear Motif Atlas for Phosphorylation-Dependent Signaling. Sci. Signal. 1, ra2 (2008).

Read the Full Text

The multiple-specificity landscape of modular peptide recognition domains.
D. Gfeller, F. Butty, M. Wierzbicka, E. Verschueren, P. Vanhee, H. Huang, A. Ernst, N. Dar, I. Stagljar, L. Serrano, et al. (2014)
Mol Syst Biol 7, 484
   Abstract »    Full Text »    PDF »
Evolution and functional cross-talk of protein post-translational modifications.
P. Beltrao, P. Bork, N. J. Krogan, and V. van Noort (2014)
Mol Syst Biol 9, 714
   Abstract »    Full Text »    PDF »
Construction of human activity-based phosphorylation networks.
R. H. Newman, J. Hu, H.-S. Rho, Z. Xie, C. Woodard, J. Neiswinger, C. Cooper, M. Shirley, H. M. Clark, S. Hu, et al. (2014)
Mol Syst Biol 9, 655
   Abstract »    Full Text »    PDF »
Deciphering kinase-substrate relationships by analysis of domain-specific phosphorylation network.
N. P. Damle and D. Mohanty (2014)
   Abstract »    Full Text »    PDF »
Vasopressin-2 Receptor Signaling and Autosomal Dominant Polycystic Kidney Disease: From Bench to Bedside and Back Again.
M. M. Rinschen, B. Schermer, and T. Benzing (2014)
J. Am. Soc. Nephrol.
   Abstract »
Global analysis of the effects of the V2 receptor antagonist satavaptan on protein phosphorylation in collecting duct.
J. D. Hoffert, T. Pisitkun, F. Saeed, J. L. Wilson, and M. A. Knepper (2014)
Am J Physiol Renal Physiol 306, 410-421
   Abstract »    Full Text »    PDF »
Status of Large-scale Analysis of Post-translational Modifications by Mass Spectrometry.
J. V. Olsen and M. Mann (2013)
Mol. Cell. Proteomics 12, 3444-3452
   Abstract »    Full Text »    PDF »
In Vivo Phosphoproteomics Analysis Reveals the Cardiac Targets of {beta}-Adrenergic Receptor Signaling.
A. Lundby, M. N. Andersen, A. B. Steffensen, H. Horn, C. D. Kelstrup, C. Francavilla, L. J. Jensen, N. Schmitt, M. B. Thomsen, and J. V. Olsen (2013)
Science Signaling 6, rs11
   Abstract »    Full Text »    PDF »
Phosphotyrosine Signaling Proteins that Drive Oncogenesis Tend to be Highly Interconnected.
G. Koytiger, A. Kaushansky, A. Gordus, J. Rush, P. K. Sorger, and G. MacBeath (2013)
Mol. Cell. Proteomics 12, 1204-1213
   Abstract »    Full Text »    PDF »
Genetics and Phosphoproteomics Reveal a Protein Phosphorylation Network in the Abscisic Acid Signaling Pathway in Arabidopsis thaliana.
T. Umezawa, N. Sugiyama, F. Takahashi, J. C. Anderson, Y. Ishihama, S. C. Peck, and K. Shinozaki (2013)
Science Signaling 6, rs8
   Abstract »    Full Text »    PDF »
The Tumor Suppressor Mst1 Promotes Changes in the Cellular Redox State by Phosphorylation and Inactivation of Peroxiredoxin-1 Protein.
S. J. Rawat, C. L. Creasy, J. R. Peterson, and J. Chernoff (2013)
J. Biol. Chem. 288, 8762-8771
   Abstract »    Full Text »    PDF »
Computational phosphorylation site prediction in plants using random forests and organism-specific instance weights.
B. Trost and A. Kusalik (2013)
Bioinformatics 29, 686-694
   Abstract »    Full Text »    PDF »
Involvement of Lyn and the Atypical Kinase SgK269/PEAK1 in a Basal Breast Cancer Signaling Pathway.
D. R. Croucher, F. Hochgrafe, L. Zhang, L. Liu, R. J. Lyons, D. Rickwood, C. M. Tactacan, B. C. Browne, N. Ali, H. Chan, et al. (2013)
Cancer Res. 73, 1969-1980
   Abstract »    Full Text »    PDF »
Systems biology in physiology: the vasopressin signaling network in kidney.
M. A. Knepper (2012)
Am J Physiol Cell Physiol 303, C1115-C1124
   Abstract »    Full Text »    PDF »
SAPIN: A framework for the structural analysis of protein interaction networks.
J.-S. Yang, A. Campagna, J. Delgado, P. Vanhee, L. Serrano, and C. Kiel (2012)
Bioinformatics 28, 2998-2999
   Abstract »    Full Text »    PDF »
Cyclic GMP-dependent Stimulation of Serotonin Transport Does Not Involve Direct Transporter Phosphorylation by cGMP-dependent Protein Kinase.
A. Wong, Y.-W. Zhang, G. R. Jeschke, B. E. Turk, and G. Rudnick (2012)
J. Biol. Chem. 287, 36051-36058
   Abstract »    Full Text »    PDF »
Identifying protein kinase target preferences using mass spectrometry.
J. Douglass, R. Gunaratne, D. Bradford, F. Saeed, J. D. Hoffert, P. J. Steinbach, M. A. Knepper, and T. Pisitkun (2012)
Am J Physiol Cell Physiol 303, C715-C727
   Abstract »    Full Text »    PDF »
Protein kinases display minimal interpositional dependence on substrate sequence: potential implications for the evolution of signalling networks.
B. A. Joughin, C. Liu, D. A. Lauffenburger, C. W. V. Hogue, and M. B. Yaffe (2012)
Phil Trans R Soc B 367, 2574-2583
   Abstract »    Full Text »    PDF »
Modular evolution of phosphorylation-based signalling systems.
J. Jin and T. Pawson (2012)
Phil Trans R Soc B 367, 2540-2555
   Abstract »    Full Text »    PDF »
Charting the Landscape of Tandem BRCT Domain-Mediated Protein Interactions.
N. T. Woods, R. D. Mesquita, M. Sweet, M. A. Carvalho, X. Li, Y. Liu, H. Nguyen, C. E. Thomas, E. S. Iversen Jr., S. Marsillac, et al. (2012)
Science Signaling 5, rs6
   Abstract »    Full Text »    PDF »
PepSite: prediction of peptide-binding sites from protein surfaces.
L. G. Trabuco, S. Lise, E. Petsalaki, and R. B. Russell (2012)
Nucleic Acids Res. 40, W423-W427
   Abstract »    Full Text »    PDF »
The human phosphotyrosine signaling network: Evolution and hotspots of hijacking in cancer.
L. Li, C. Tibiche, C. Fu, T. Kaneko, M. F. Moran, M. R. Schiller, S. S.-C. Li, and E. Wang (2012)
Genome Res. 22, 1222-1230
   Abstract »    Full Text »    PDF »
MMFPh: a maximal motif finder for phosphoproteomics datasets.
T. Wang, A. N. Kettenbach, S. A. Gerber, and C. Bailey-Kellogg (2012)
Bioinformatics 28, 1562-1570
   Abstract »    Full Text »    PDF »
C-terminal Acidic Cluster Is Involved in Ca2+-induced Regulation of Human Transient Receptor Potential Ankyrin 1 Channel.
L. Sura, V. Zima, L. Marsakova, A. Hynkova, I. Barvik, and V. Vlachova (2012)
J. Biol. Chem. 287, 18067-18077
   Abstract »    Full Text »    PDF »
c-Jun N-terminal kinase-mediated Rad18 phosphorylation facilitates Pol{eta} recruitment to stalled replication forks.
L. R. Barkley, K. Palle, M. Durando, T. A. Day, A. Gurkar, N. Kakusho, J. Li, H. Masai, and C. Vaziri (2012)
Mol. Biol. Cell 23, 1943-1954
   Abstract »    Full Text »    PDF »
Crk and Abi1: Binary Molecular Switches That Regulate Abl Tyrosine Kinase and Signaling to the Cytoskeleton.
S. Hossain, P. M. Dubielecka, A. F. Sikorski, R. B. Birge, and L. Kotula (2012)
Genes & Cancer 3, 402-413
   Abstract »    Full Text »    PDF »
MUSI: an integrated system for identifying multiple specificity from very large peptide or nucleic acid data sets.
T. Kim, M. S. Tyndel, H. Huang, S. S. Sidhu, G. D. Bader, D. Gfeller, and P. M. Kim (2012)
Nucleic Acids Res. 40, e47
   Abstract »    Full Text »    PDF »
Phosphosite Mapping of P-type Plasma Membrane H+-ATPase in Homologous and Heterologous Environments.
E. L. Rudashevskaya, J. Ye, O. N. Jensen, A. T. Fuglsang, and M. G. Palmgren (2012)
J. Biol. Chem. 287, 4904-4913
   Abstract »    Full Text »    PDF »
Dynamics of the G Protein-coupled Vasopressin V2 Receptor Signaling Network Revealed by Quantitative Phosphoproteomics.
J. D. Hoffert, T. Pisitkun, F. Saeed, J. H. Song, C.-L. Chou, and M. A. Knepper (2012)
Mol. Cell. Proteomics 11, M111.014613
   Abstract »    Full Text »    PDF »
PlateletWeb: a systems biologic analysis of signaling networks in human platelets.
D. Boyanova, S. Nilla, I. Birschmann, T. Dandekar, and M. Dittrich (2012)
Blood 119, e22-e34
   Abstract »    Full Text »    PDF »
Large-scale phosphotyrosine proteomic profiling of rat renal collecting duct epithelium reveals predominance of proteins involved in cell polarity determination.
B. Zhao, M. A. Knepper, C.-L. Chou, and T. Pisitkun (2012)
Am J Physiol Cell Physiol 302, C27-C45
   Abstract »    Full Text »    PDF »
The SH2 Domain-Containing Proteins in 21 Species Establish the Provenance and Scope of Phosphotyrosine Signaling in Eukaryotes.
B. A. Liu, E. Shah, K. Jablonowski, A. Stergachis, B. Engelmann, and P. D. Nash (2011)
Science Signaling 4, ra83
   Abstract »    Full Text »    PDF »
Ajuba is required for Rac activation and maintenance of E-cadherin adhesion.
S. Nola, R. Daigaku, K. Smolarczyk, M. Carstens, B. Martin-Martin, G. Longmore, M. Bailly, and V. M. M. Braga (2011)
J. Cell Biol. 195, 855-871
   Abstract »    Full Text »    PDF »
Proteomic and Functional Genomic Landscape of Receptor Tyrosine Kinase and Ras to Extracellular Signal-Regulated Kinase Signaling.
A. A. Friedman, G. Tucker, R. Singh, D. Yan, A. Vinayagam, Y. Hu, R. Binari, P. Hong, X. Sun, M. Porto, et al. (2011)
Science Signaling 4, rs10
   Abstract »    Full Text »    PDF »
Sequence, Structure, and Network Evolution of Protein Phosphorylation.
C. S. H. Tan (2011)
Science Signaling 4, mr6
   Abstract »    Full Text »    PDF »
Response to Comment on "Positive Selection of Tyrosine Loss in Metazoan Evolution".
C. S. H. Tan, E. M. Schoof, P. Creixell, A. Pasculescu, W. A. Lim, T. Pawson, G. D. Bader, and R. Linding (2011)
Science 332, 917
   Abstract »    Full Text »    PDF »
Identification of New Substrates of the Protein-tyrosine Phosphatase PTP1B by Bayesian Integration of Proteome Evidence.
E. Ferrari, M. Tinti, S. Costa, S. Corallino, A. P. Nardozza, A. Chatraryamontri, A. Ceol, G. Cesareni, and L. Castagnoli (2011)
J. Biol. Chem. 286, 4173-4185
   Abstract »    Full Text »    PDF »
The Plk1-dependent Phosphoproteome of the Early Mitotic Spindle.
A. Santamaria, B. Wang, S. Elowe, R. Malik, F. Zhang, M. Bauer, A. Schmidt, H. H. W. Sillje, R. Korner, and E. A. Nigg (2011)
Mol. Cell. Proteomics 10, M110.004457
   Abstract »    Full Text »    PDF »
Structural Bases of PAS Domain-regulated Kinase (PASK) Activation in the Absence of Activation Loop Phosphorylation.
C. K. Kikani, S. A. Antonysamy, J. B. Bonanno, R. Romero, F. F. Zhang, M. Russell, T. Gheyi, M. Iizuka, S. Emtage, J. M. Sauder, et al. (2010)
J. Biol. Chem. 285, 41034-41043
   Abstract »    Full Text »    PDF »
A Strategy for Interaction Site Prediction between Phospho-binding Modules and their Partners Identified from Proteomic Data.
W. Aucher, E. Becker, E. Ma, S. Miron, A. Martel, F. Ochsenbein, M.-C. Marsolier-Kergoat, and R. Guerois (2010)
Mol. Cell. Proteomics 9, 2745-2759
   Abstract »    Full Text »    PDF »
Musite, a Tool for Global Prediction of General and Kinase-specific Phosphorylation Sites.
J. Gao, J. J. Thelen, A. K. Dunker, and D. Xu (2010)
Mol. Cell. Proteomics 9, 2586-2600
   Abstract »    Full Text »    PDF »
Vasopressin increases phosphorylation of Ser84 and Ser486 in Slc14a2 collecting duct urea transporters.
S. Hwang, R. Gunaratne, M. M. Rinschen, M.-J. Yu, T. Pisitkun, J. D. Hoffert, R. A. Fenton, M. A. Knepper, and C.-L. Chou (2010)
Am J Physiol Renal Physiol 299, F559-F567
   Abstract »    Full Text »    PDF »
Collection and Motif-Based Prediction of Phosphorylation Sites in Human Viruses.
D. Schwartz and G. M. Church (2010)
Science Signaling 3, rs2
   Abstract »    Full Text »    PDF »
Quantitative phosphoproteomic analysis reveals cAMP/vasopressin-dependent signaling pathways in native renal thick ascending limb cells.
R. Gunaratne, D. W. W. Braucht, M. M. Rinschen, C.-L. Chou, J. D. Hoffert, T. Pisitkun, and M. A. Knepper (2010)
PNAS 107, 15653-15658
   Abstract »    Full Text »    PDF »
Dissecting the M Phase-specific Phosphorylation of Serine-Proline or Threonine-Proline Motifs.
C. F. Wu, R. Wang, Q. Liang, J. Liang, W. Li, S. Y. Jung, J. Qin, S. H. Lin, and J. Kuang (2010)
Mol. Biol. Cell 21, 1470-1481
   Abstract »    Full Text »    PDF »
Characterization of a Novel Interaction Between Vasodilator-Stimulated Phosphoprotein and Abelson Interactor 1 in Human Platelets: A Concerted Computational and Experimental Approach.
M. Dittrich, V. Strassberger, M. Fackler, P. Tas, U. Lewandrowski, A. Sickmann, U. Walter, T. Dandekar, and I. Birschmann (2010)
Arterioscler Thromb Vasc Biol 30, 843-850
   Abstract »    Full Text »    PDF »
Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells.
M. M. Rinschen, M.-J. Yu, G. Wang, E. S. Boja, J. D. Hoffert, T. Pisitkun, and M. A. Knepper (2010)
PNAS 107, 3882-3887
   Abstract »    Full Text »    PDF »
Deciphering Protein Kinase Specificity Through Large-Scale Analysis of Yeast Phosphorylation Site Motifs.
J. Mok, P. M. Kim, H. Y. K. Lam, S. Piccirillo, X. Zhou, G. R. Jeschke, D. L. Sheridan, S. A. Parker, V. Desai, M. Jwa, et al. (2010)
Science Signaling 3, ra12
   Abstract »    Full Text »    PDF »
Phosphoproteomic Profiling Reveals Vasopressin-Regulated Phosphorylation Sites in Collecting Duct.
A. D. Bansal, J. D. Hoffert, T. Pisitkun, S. Hwang, C.-L. Chou, E. S. Boja, G. Wang, and M. A. Knepper (2010)
J. Am. Soc. Nephrol. 21, 303-315
   Abstract »    Full Text »    PDF »
Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis.
J. V. Olsen, M. Vermeulen, A. Santamaria, C. Kumar, M. L. Miller, L. J. Jensen, F. Gnad, J. Cox, T. S. Jensen, E. A. Nigg, et al. (2010)
Science Signaling 3, ra3
   Abstract »    Full Text »    PDF »
Understanding protein phosphorylation on a systems level.
J. Lin, Z. Xie, H. Zhu, and J. Qian (2010)
Briefings in Functional Genomics
   Abstract »    Full Text »    PDF »
ELM: the status of the 2010 eukaryotic linear motif resource.
C. M. Gould, F. Diella, A. Via, P. Puntervoll, C. Gemund, S. Chabanis-Davidson, S. Michael, A. Sayadi, J. C. Bryne, C. Chica, et al. (2010)
Nucleic Acids Res. 38, D167-D180
   Abstract »    Full Text »    PDF »
Cell-Specific Information Processing in Segregating Populations of Eph Receptor Ephrin-Expressing Cells.
C. Jorgensen, A. Sherman, G. I. Chen, A. Pasculescu, A. Poliakov, M. Hsiung, B. Larsen, D. G. Wilkinson, R. Linding, and T. Pawson (2009)
Science 326, 1502-1509
   Abstract »    Full Text »    PDF »
Positive Selection of Tyrosine Loss in Metazoan Evolution.
C. S. H. Tan, A. Pasculescu, W. A. Lim, T. Pawson, G. D. Bader, and R. Linding (2009)
Science 325, 1686-1688
   Abstract »    Full Text »    PDF »
Comparative Analysis Reveals Conserved Protein Phosphorylation Networks Implicated in Multiple Diseases.
C. S. H. Tan, B. Bodenmiller, A. Pasculescu, M. Jovanovic, M. O. Hengartner, C. Jorgensen, G. D. Bader, R. Aebersold, T. Pawson, and R. Linding (2009)
Science Signaling 2, ra39
   Abstract »    Full Text »    PDF »
Predicting Protein Post-translational Modifications Using Meta-analysis of Proteome Scale Data Sets.
D. Schwartz, M. F. Chou, and G. M. Church (2009)
Mol. Cell. Proteomics 8, 365-379
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 28 October 2008.
R. Linding and A. M. VanHook (2008)
Science Signaling 1, pc10
   Abstract »    Full Text »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882