Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 11 November 2008
Vol. 1, Issue 45, p. ra12
[DOI: 10.1126/scisignal.2000037]


New Regulators of Wnt/β-Catenin Signaling Revealed by Integrative Molecular Screening

Michael B. Major1*, Brian S. Roberts2*, Jason D. Berndt1, Shane Marine3, Jamie Anastas1, Namjin Chung3, Marc Ferrer3, XianHua Yi4, Cristi L. Stoick-Cooper1, Priska D. von Haller5, Lorna Kategaya1, Andy Chien1, Stephane Angers6, Michael MacCoss4, Michele A. Cleary2, William T. Arthur2{dagger}, and Randall T. Moon1{dagger}

1 Howard Hughes Medical Institute, Department of Pharmacology, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Box 357370, Seattle, WA 98195, USA.
2 Rosetta Inpharmatics, LLC, Merck & Co Inc., 401 Terry Avenue N, Seattle, WA 98109, USA.
3 Merck Research Labs, Department of Automated Biotechnology, North Wales, PA 19454, USA.
4 Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.
5 Proteomics Resource, University of Washington, Seattle, WA 98109, USA.
6 Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2.

* These authors contributed equally to this work.

Abstract: The identification and characterization of previously unidentified signal transduction molecules has expanded our understanding of biological systems and facilitated the development of mechanism-based therapeutics. We present a highly validated small interfering RNA (siRNA) screen that functionally annotates the human genome for modulation of the Wnt/β-catenin signal transduction pathway. Merging these functional data with an extensive Wnt/β-catenin protein interaction network produces an integrated physical and functional map of the pathway. The power of this approach is illustrated by the positioning of siRNA screen hits into discrete physical complexes of proteins. Similarly, this approach allows one to filter discoveries made through protein-protein interaction screens for functional contribution to the phenotype of interest. Using this methodology, we characterized AGGF1 as a nuclear chromatin-associated protein that participates in β-catenin–mediated transcription in human colon cancer cells.

{dagger} To whom correspondence should be addressed. E-mail: william_arthur{at} (W.T.A.) and rtmoon{at} (R.T.M.)

Citation: M. B. Major, B. S. Roberts, J. D. Berndt, S. Marine, J. Anastas, N. Chung, M. Ferrer, X. Yi, C. L. Stoick-Cooper, P. D. von Haller, L. Kategaya, A. Chien, S. Angers, M. MacCoss, M. A. Cleary, W. T. Arthur, R. T. Moon, New Regulators of Wnt/β-Catenin Signaling Revealed by Integrative Molecular Screening. Sci. Signal. 1, ra12 (2008).

Read the Full Text

Application of an integrated physical and functional screening approach to identify inhibitors of the Wnt pathway.
B. W. Miller, G. Lau, C. Grouios, E. Mollica, M. Barrios-Rodiles, Y. Liu, A. Datti, Q. Morris, J. L. Wrana, and L. Attisano (2014)
Mol Syst Biol 5, 315
   Abstract »    Full Text »    PDF »
Sall1 balances self-renewal and differentiation of renal progenitor cells.
J. M. Basta, L. Robbins, S. M. Kiefer, D. Dorsett, and M. Rauchman (2014)
Development 141, 1047-1058
   Abstract »    Full Text »    PDF »
{beta}-Arrestin Promotes Wnt-induced Low Density Lipoprotein Receptor-related Protein 6 (Lrp6) Phosphorylation via Increased Membrane Recruitment of Amer1 Protein.
V. Kriz, V. Pospichalova, J. Masek, M. B. C. Kilander, J. Slavik, K. Tanneberger, G. Schulte, M. Machala, A. Kozubik, J. Behrens, et al. (2014)
J. Biol. Chem. 289, 1128-1141
   Abstract »    Full Text »    PDF »
Protein Kinase PKN1 Represses Wnt/{beta}-Catenin Signaling in Human Melanoma Cells.
R. G. James, K. A. Bosch, R. M. Kulikauskas, P. T. Yang, N. C. Robin, R. A. Toroni, T. L. Biechele, J. D. Berndt, P. D. von Haller, J. K. Eng, et al. (2013)
J. Biol. Chem. 288, 34658-34670
   Abstract »    Full Text »    PDF »
Targeting Wnt Pathways in Disease.
Z. F. Zimmerman, R. T. Moon, and A. J. Chien (2012)
Cold Spring Harb Perspect Biol 4, a008086
   Abstract »    Full Text »    PDF »
Functional genomics identifies therapeutic targets for MYC-driven cancer.
M. Toyoshima, H. L. Howie, M. Imakura, R. M. Walsh, J. E. Annis, A. N. Chang, J. Frazier, B. N. Chau, A. Loboda, P. S. Linsley, et al. (2012)
PNAS 109, 9545-9550
   Abstract »    Full Text »    PDF »
Wnt/{beta}-catenin signaling is differentially regulated by G{alpha} proteins and contributes to fibrous dysplasia.
J. B. Regard, N. Cherman, D. Palmer, S. A. Kuznetsov, F. S. Celi, J.-M. Guettier, M. Chen, N. Bhattacharyya, J. Wess, S. R. Coughlin, et al. (2011)
PNAS 108, 20101-20106
   Abstract »    Full Text »    PDF »
Proteomic and Functional Genomic Landscape of Receptor Tyrosine Kinase and Ras to Extracellular Signal-Regulated Kinase Signaling.
A. A. Friedman, G. Tucker, R. Singh, D. Yan, A. Vinayagam, Y. Hu, R. Binari, P. Hong, X. Sun, M. Porto, et al. (2011)
Science Signaling 4, rs10
   Abstract »    Full Text »    PDF »
ASPM regulates Wnt signaling pathway activity in the developing brain.
J. J. Buchman, O. Durak, and L.-H. Tsai (2011)
Genes & Dev. 25, 1909-1914
   Abstract »    Full Text »    PDF »
Mindbomb 1, an E3 ubiquitin ligase, forms a complex with RYK to activate Wnt/{beta}-catenin signaling.
J. D. Berndt, A. Aoyagi, P. Yang, J. N. Anastas, L. Tang, and R. T. Moon (2011)
J. Cell Biol. 194, 737-750
   Abstract »    Full Text »    PDF »
The Ubiquitin-Specific Protease USP34 Regulates Axin Stability and Wnt/{beta}-Catenin Signaling.
T. T. H. Lui, C. Lacroix, S. M. Ahmed, S. J. Goldenberg, C. A. Leach, A. M. Daulat, and S. Angers (2011)
Mol. Cell. Biol. 31, 2053-2065
   Abstract »    Full Text »    PDF »
Jerky/Earthbound facilitates cell-specific Wnt/Wingless signalling by modulating {beta}-catenin-TCF activity.
H. Benchabane, N. Xin, A. Tian, B. P. Hafler, K. Nguyen, A. Ahmed, and Y. Ahmed (2011)
EMBO J. 30, 1444-1458
   Abstract »    Full Text »    PDF »
The GDNF Target Vsnl1 Marks the Ureteric Tip.
R. Ola, M. Jakobson, J. Kvist, N. Perala, S. Kuure, K.-H. Braunewell, D. Bridgewater, N. D. Rosenblum, D. Chilov, T. Immonen, et al. (2011)
J. Am. Soc. Nephrol. 22, 274-284
   Abstract »    Full Text »    PDF »
Exosome release of {beta}-catenin: a novel mechanism that antagonizes Wnt signaling.
A. Chairoungdua, D. L. Smith, P. Pochard, M. Hull, and M. J. Caplan (2010)
J. Cell Biol. 190, 1079-1091
   Abstract »    Full Text »    PDF »
Inactivation of LEF1 in T-cell acute lymphoblastic leukemia.
A. Gutierrez, T. Sanda, W. Ma, J. Zhang, R. Grebliunaite, S. Dahlberg, D. Neuberg, A. Protopopov, S. S. Winter, R. S. Larson, et al. (2010)
Blood 115, 2845-2851
   Abstract »    Full Text »    PDF »
Transcription-Based Reporters of Wnt/{beta}-Catenin Signaling.
T. L. Biechele, A. M. Adams, and R. T. Moon (2009)
Cold Spring Harb Protoc 2009, pdb.prot5223
   Abstract »    Full Text »    PDF »
Bruton's Tyrosine Kinase Revealed as a Negative Regulator of Wnt-{beta}-Catenin Signaling.
R. G. James, T. L. Biechele, W. H. Conrad, N. D. Camp, D. M. Fass, M. B. Major, K. Sommer, X. Yi, B. S. Roberts, M. A. Cleary, et al. (2009)
Science Signaling 2, ra25
   Abstract »    Full Text »    PDF »
Integrative Analysis of Genome-Wide RNA Interference Screens.
J. D. Berndt, T. L. Biechele, R. T. Moon, and M. B. Major (2009)
Science Signaling 2, pt4
   Abstract »    Full Text »    PDF »
2008: Signaling Breakthroughs of the Year.
E. M. Adler (2009)
Science Signaling 2, eg1
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 11 November 2008.
M. B. Major, R. T. Moon, and A. M. VanHook (2008)
Science Signaling 1, pc11
   Abstract »    Full Text »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882