Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 15 December 2009
Vol. 2, Issue 101, p. ra82
[DOI: 10.1126/scisignal.2000446]


EGFR Signaling Through an Akt-SREBP-1–Dependent, Rapamycin-Resistant Pathway Sensitizes Glioblastomas to Antilipogenic Therapy

Deliang Guo1, Robert M. Prins2, Julie Dang1, Daisuke Kuga1, Akio Iwanami1, Horacio Soto2, Kelly Y. Lin1, Tiffany T. Huang1, David Akhavan1, M. Benjamin Hock1, Shaojun Zhu1, Ava A. Kofman1, Steve J. Bensinger1, William H. Yong1,3, Harry V. Vinters1,4, Steve Horvath5, Andrew D. Watson6, John G. Kuhn7, H. Ian Robins8, Minesh P. Mehta8, Patrick Y. Wen9, Lisa M. DeAngelis10, Michael D. Prados11, Ingo K. Mellinghoff10, Timothy F. Cloughesy3,4, and Paul S. Mischel1,3,12*

1 Department of Pathology and Laboratory Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA.
2 Department of Surgery, Division of Neurosurgery, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA.
3 Henry Singleton Brain Tumor Program and Jonsson Comprehensive Cancer Center, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA.
4 Department of Neurology, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA.
5 Departments of Human Genetics and Biostatistics, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA.
6 Department of Medicine, Division of Cardiology, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA.
7 University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
8 University of Wisconsin-Madison, Madison, WI 53711, USA.
9 Dana-Farber Cancer Institute, Boston, MA 02115, USA.
10 Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
11 University of California, San Francisco, San Francisco, CA 94143, USA.
12 Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA.

Abstract: Glioblastoma, the most common malignant brain tumor, is among the most lethal and difficult cancers to treat. Although epidermal growth factor receptor (EGFR) mutations are frequent in glioblastoma, their clinical relevance is poorly understood. Studies of tumors from patients treated with the EGFR inhibitor lapatinib revealed that EGFR induces the cleavage and nuclear translocation of the master transcriptional regulator of fatty acid synthesis, sterol regulatory element–binding protein 1 (SREBP-1). This response was mediated by Akt; however, clinical data from rapamycin-treated patients showed that SREBP-1 activation was independent of the mammalian target of rapamycin complex 1, possibly explaining rapamycin’s poor efficacy in the treatment of such tumors. Glioblastomas without constitutively active EGFR signaling were resistant to inhibition of fatty acid synthesis, whereas introduction of a constitutively active mutant form of EGFR, EGFRvIII, sensitized tumor xenografts in mice to cell death, which was augmented by the hydroxymethylglutaryl coenzyme A reductase inhibitor atorvastatin. These results identify a previously undescribed EGFR-mediated prosurvival metabolic pathway and suggest new therapeutic approaches to treating EGFR-activated glioblastomas.

* To whom correspondence should be addressed. E-mail: pmischel{at}

Citation: D. Guo, R. M. Prins, J. Dang, D. Kuga, A. Iwanami, H. Soto, K. Y. Lin, T. T. Huang, D. Akhavan, M. B. Hock, S. Zhu, A. A. Kofman, S. J. Bensinger, W. H. Yong, H. V. Vinters, S. Horvath, A. D. Watson, J. G. Kuhn, H. I. Robins, M. P. Mehta, P. Y. Wen, L. M. DeAngelis, M. D. Prados, I. K. Mellinghoff, T. F. Cloughesy, P. S. Mischel, EGFR Signaling Through an Akt-SREBP-1–Dependent, Rapamycin-Resistant Pathway Sensitizes Glioblastomas to Antilipogenic Therapy. Sci. Signal. 2, ra82 (2009).

Read the Full Text

Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development.
F. Baenke, B. Peck, H. Miess, and A. Schulze (2013)
Dis. Model. Mech. 6, 1353-1363
   Abstract »    Full Text »    PDF »
De-Repression of PDGFR{beta} Transcription Promotes Acquired Resistance to EGFR Tyrosine Kinase Inhibitors in Glioblastoma Patients.
D. Akhavan, A. L. Pourzia, A. A. Nourian, K. J. Williams, D. Nathanson, I. Babic, G. R. Villa, K. Tanaka, A. Nael, H. Yang, et al. (2013)
Cancer Discovery 3, 534-547
   Abstract »    Full Text »    PDF »
An Essential Requirement for the SCAP/SREBP Signaling Axis to Protect Cancer Cells from Lipotoxicity.
K. J. Williams, J. P. Argus, Y. Zhu, M. Q. Wilks, B. N. Marbois, A. G. York, Y. Kidani, A. L. Pourzia, D. Akhavan, D. N. Lisiero, et al. (2013)
Cancer Res. 73, 2850-2862
   Abstract »    Full Text »    PDF »
PML mediates glioblastoma resistance to mammalian target of rapamycin (mTOR)-targeted therapies.
A. Iwanami, B. Gini, C. Zanca, T. Matsutani, A. Assuncao, A. Nael, J. Dang, H. Yang, S. Zhu, J. Kohyama, et al. (2013)
PNAS 110, 4339-4344
   Abstract »    Full Text »    PDF »
The multifaceted role of mTORC1 in the control of lipid metabolism.
S. J. H. Ricoult and B. D. Manning (2013)
EMBO Rep. 14, 242-251
   Abstract »    Full Text »    PDF »
Key concepts in glioblastoma therapy.
J. Bartek Jr, K. Ng, J. Bartek, W. Fischer, B. Carter, and C. C. Chen (2012)
J. Neurol. Neurosurg. Psychiatry 83, 753-760
   Abstract »    Full Text »    PDF »
SREBP-1 activation by glucose mediates TGF-{beta} upregulation in mesangial cells.
L. Uttarwar, B. Gao, A. J. Ingram, and J. C. Krepinsky (2012)
Am J Physiol Renal Physiol 302, F329-F341
   Abstract »    Full Text »    PDF »
Oncogenic EGFR Signaling Activates an mTORC2-NF-{kappa}B Pathway That Promotes Chemotherapy Resistance.
K. Tanaka, I. Babic, D. Nathanson, D. Akhavan, D. Guo, B. Gini, J. Dang, S. Zhu, H. Yang, J. De Jesus, et al. (2011)
Cancer Discovery 1, 524-538
   Abstract »    Full Text »    PDF »
An LXR Agonist Promotes Glioblastoma Cell Death through Inhibition of an EGFR/AKT/SREBP-1/LDLR-Dependent Pathway.
D. Guo, F. Reinitz, M. Youssef, C. Hong, D. Nathanson, D. Akhavan, D. Kuga, A. N. Amzajerdi, H. Soto, S. Zhu, et al. (2011)
Cancer Discovery 1, 442-456
   Abstract »    Full Text »    PDF »
Metabolic state of glioma stem cells and nontumorigenic cells.
E. Vlashi, C. Lagadec, L. Vergnes, T. Matsutani, K. Masui, M. Poulou, R. Popescu, L. Della Donna, P. Evers, C. Dekmezian, et al. (2011)
PNAS 108, 16062-16067
   Abstract »    Full Text »    PDF »
Positive Feedback Loop Between PI3K-Akt-mTORC1 Signaling and the Lipogenic Pathway Boosts Akt Signaling: Induction of the Lipogenic Pathway by a Melanoma Antigen.
Y. Yamauchi, K. Furukawa, K. Hamamura, and K. Furukawa (2011)
Cancer Res. 71, 4989-4997
   Abstract »    Full Text »    PDF »
A GATA4-regulated tumor suppressor network represses formation of malignant human astrocytomas.
S. Agnihotri, A. Wolf, D. M. Munoz, C. J. Smith, A. Gajadhar, A. Restrepo, I. D. Clarke, G. N. Fuller, S. Kesari, P. B. Dirks, et al. (2011)
J. Exp. Med. 208, 689-702
   Abstract »    Full Text »    PDF »
New Strategies in the Molecular Targeting of Glioblastoma: How Do You Hit a Moving Target?.
T. F. Cloughesy and P. S. Mischel (2011)
Clin. Cancer Res. 17, 6-11
   Abstract »    Full Text »    PDF »
The Effects of Anti-VEGFR and Anti-EGFR Agents on Glioma Cell Migration Through Implication of Growth Factors with Integrins.
Anticancer Res 30, 4987-4992
   Abstract »    Full Text »    PDF »
Balancing biosynthesis and bioenergetics: metabolic programs in oncogenesis.
J. F. Barger and D. R. Plas (2010)
Endocr. Relat. Cancer 17, R287-R304
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 15 December 2009.
P. S. Mischel and A. M. VanHook (2009)
Science Signaling 2, pc23
   Abstract »    Full Text »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882