Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 10 February 2009
Vol. 2, Issue 57, p. mr1
[DOI: 10.1126/scisignal.257mr1]

MEETING REPORTS

Emerging Roles of NAD+ and Its Metabolites in Cell Signaling

Friedrich Koch-Nolte1*, Friedrich Haag1, Andreas H. Guse2, Frances Lund3, and Mathias Ziegler4

1 Institute of Immunology, Diagnostic Department, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
2 The Calcium Signaling Group, Institute of Biochemistry and Molecular Biology I, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
3 Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, 601 Elmwood Drive, Rochester, NY 14642, USA.
4 Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway.

A report on the NAD2008 symposium, Hamburg, Germany, 14 to 17 September 2008.

Abstract: Nicotinamide adenine dinucleotide (NAD+) is the universal currency of energy metabolism and electron transfer. Recent studies indicate that apart from its role as a coenzyme, NAD+ and its metabolites also function in cell signaling pathways; for example, they are substrates for nucleotide-metabolizing enzymes and ligands for extra- and intracellular receptors and ion channels. Moreover, the NAD+ and NAD+ phosphate metabolites adenosine 5'-diphosphoribose (ADP-ribose), cyclic ADP-ribose, and nicotinic acid adenine dinucleotide phosphate (NAADP) have emerged as key second messengers in Ca2+ signaling. A symposium in Hamburg, Germany, brought together 120 researchers from various fields, who were all engaged in the molecular characterization of the key players of NAD+ signaling (www.NAD2008.de).

* Corresponding author. E-mail, nolte{at}uke.de

Citation: F. Koch-Nolte, F. Haag, A. H. Guse, F. Lund, M. Ziegler, Emerging Roles of NAD+ and Its Metabolites in Cell Signaling. Sci. Signal. 2, mr1 (2009).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
CD73 Protein as a Source of Extracellular Precursors for Sustained NAD+ Biosynthesis in FK866-treated Tumor Cells.
A. Grozio, G. Sociali, L. Sturla, I. Caffa, D. Soncini, A. Salis, N. Raffaelli, A. De Flora, A. Nencioni, and S. Bruzzone (2013)
J. Biol. Chem. 288, 25938-25949
   Abstract »    Full Text »    PDF »
Pyridine Nucleotide Regulation of Cardiac Intermediary Metabolism.
J. R. Ussher, J. S. Jaswal, and G. D. Lopaschuk (2012)
Circ. Res. 111, 628-641
   Abstract »    Full Text »    PDF »
ASPARTATE OXIDASE Plays an Important Role in Arabidopsis Stomatal Immunity.
A. P. Macho, F. Boutrot, J. P. Rathjen, and C. Zipfel (2012)
Plant Physiology 159, 1845-1856
   Abstract »    Full Text »    PDF »
Pharmacological Effects of Exogenous NAD on Mitochondrial Bioenergetics, DNA Repair, and Apoptosis.
M. Pittelli, R. Felici, V. Pitozzi, L. Giovannelli, E. Bigagli, F. Cialdai, G. Romano, F. Moroni, and A. Chiarugi (2011)
Mol. Pharmacol. 80, 1136-1146
   Abstract »    Full Text »    PDF »
Reciprocal Potentiation of the Antitumoral Activities of FK866, an Inhibitor of Nicotinamide Phosphoribosyltransferase, and Etoposide or Cisplatin in Neuroblastoma Cells.
C. Travelli, V. Drago, E. Maldi, N. Kaludercic, U. Galli, R. Boldorini, F. Di Lisa, G. C. Tron, P. L. Canonico, and A. A. Genazzani (2011)
J. Pharmacol. Exp. Ther. 338, 829-840
   Abstract »    Full Text »    PDF »
Nicotinamide adenine dinucleotide (NAD)-regulated DNA methylation alters CCCTC-binding factor (CTCF)/cohesin binding and transcription at the BDNF locus.
J. Chang, B. Zhang, H. Heath, N. Galjart, X. Wang, and J. Milbrandt (2010)
PNAS 107, 21836-21841
   Abstract »    Full Text »    PDF »
Inhibition of Nicotinamide Phosphoribosyltransferase: CELLULAR BIOENERGETICS REVEALS A MITOCHONDRIAL INSENSITIVE NAD POOL.
M. Pittelli, L. Formentini, G. Faraco, A. Lapucci, E. Rapizzi, F. Cialdai, G. Romano, G. Moneti, F. Moroni, and A. Chiarugi (2010)
J. Biol. Chem. 285, 34106-34114
   Abstract »    Full Text »    PDF »
Identification of Direct and Indirect Effectors of the Transient Receptor Potential Melastatin 2 (TRPM2) Cation Channel.
B. Toth and L. Csanady (2010)
J. Biol. Chem. 285, 30091-30102
   Abstract »    Full Text »    PDF »
Diadenosine Homodinucleotide Products of ADP-ribosyl Cyclases Behave as Modulators of the Purinergic Receptor P2X7.
S. Bruzzone, G. Basile, M. P. Chothi, L. Nobbio, C. Usai, E. Jacchetti, A. Schenone, A. H. Guse, F. Di Virgilio, A. De Flora, et al. (2010)
J. Biol. Chem. 285, 21165-21174
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882