Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 24 March 2009
Vol. 2, Issue 63, p. ra13
[DOI: 10.1126/scisignal.2000056]

RESEARCH ARTICLES

Dynamic Signaling in the Hog1 MAPK Pathway Relies on High Basal Signal Transduction

Javier Macia1*, Sergi Regot2*, Tom Peeters2, Núria Conde1,2, Ricard Solé1,3{dagger}, and Francesc Posas2{dagger}

1 ICREA-Complex Systems Laboratory, Universitat Pompeu Fabra, E-08003 Barcelona, Spain.
2 Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain.
3 Santa Fe Institute, Santa Fe, NM 87501, USA.

* These authors contributed equally to this work.

Abstract: Appropriate regulation of the Hog1 mitogen-activated protein kinase (MAPK) pathway is essential for cells to survive osmotic stress. Here, we show that the two sensing mechanisms upstream of Hog1 display different signaling properties. The Sho1 branch is an inducible nonbasal system, whereas the Sln1 branch shows high basal signaling that is restricted by a MAPK-mediated feedback mechanism. A two-dimensional mathematical model of the Snl1 branch, including high basal signaling and a Hog1-regulated negative feedback, shows that a system with basal signaling exhibits higher efficiency, with faster response times and higher sensitivity to variations in external signals, than would systems without basal signaling. Analysis of two other yeast MAPK pathways, the Fus3 and Kss1 signaling pathways, indicates that high intrinsic basal signaling may be a general property of MAPK pathways allowing rapid and sensitive responses to environmental changes.

{dagger} To whom correspondence should be addressed. E-mail: ricard.sole{at}upf.edu (R.S.) and francesc.posas{at}upf.edu (F.P.)

Citation: J. Macia, S. Regot, T. Peeters, N. Conde, R. Solé, F. Posas, Dynamic Signaling in the Hog1 MAPK Pathway Relies on High Basal Signal Transduction. Sci. Signal. 2, ra13 (2009).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast.
C. Miller, B. Schwalb, K. Maier, D. Schulz, S. Dumcke, B. Zacher, A. Mayer, J. Sydow, L. Marcinowski, L. Dolken, et al. (2014)
Mol Syst Biol 7, 458
   Abstract »    Full Text »    PDF »
Nested autoinhibitory feedbacks alter the resistance of homeostatic adaptive biochemical networks.
J. Schaber, A. Lapytsko, and D. Flockerzi (2014)
J R Soc Interface 11, 20130971
   Abstract »    Full Text »    PDF »
Information transfer by leaky, heterogeneous, protein kinase signaling systems.
M. Voliotis, R. M. Perrett, C. McWilliams, C. A. McArdle, and C. G. Bowsher (2014)
PNAS 111, E326-E333
   Abstract »    Full Text »    PDF »
The Hog1 Stress-activated Protein Kinase Targets Nucleoporins to Control mRNA Export upon Stress.
S. Regot, E. de Nadal, S. Rodriguez-Navarro, A. Gonzalez-Novo, J. Perez-Fernandez, O. Gadal, G. Seisenbacher, G. Ammerer, and F. Posas (2013)
J. Biol. Chem. 288, 17384-17398
   Abstract »    Full Text »    PDF »
Mediator Phosphorylation Prevents Stress Response Transcription During Non-stress Conditions.
C. Miller, I. Matic, K. C. Maier, B. Schwalb, S. Roether, K. Strasser, A. Tresch, M. Mann, and P. Cramer (2012)
J. Biol. Chem. 287, 44017-44026
   Abstract »    Full Text »    PDF »
The Hog1 SAPK controls the Rtg1/Rtg3 transcriptional complex activity by multiple regulatory mechanisms.
C. Ruiz-Roig, N. Noriega, A. Duch, F. Posas, and E. de Nadal (2012)
Mol. Biol. Cell 23, 4286-4296
   Abstract »    Full Text »    PDF »
The Temporal Pattern of Stimulation Determines the Extent and Duration of MAPK Activation in a Caenorhabditis elegans Sensory Neuron.
T. Tomida, S. Oda, M. Takekawa, Y. Iino, and H. Saito (2012)
Science Signaling 5, ra76
   Abstract »    Full Text »    PDF »
Response to Hyperosmotic Stress.
H. Saito and F. Posas (2012)
Genetics 192, 289-318
   Abstract »    Full Text »    PDF »
Combined computational and experimental analysis reveals mitogen-activated protein kinase-mediated feedback phosphorylation as a mechanism for signaling specificity.
N. Hao, N. Yildirim, M. J. Nagiec, S. C. Parnell, B. Errede, H. G. Dohlman, and T. C. Elston (2012)
Mol. Biol. Cell 23, 3899-3910
   Abstract »    Full Text »    PDF »
Moment-based inference predicts bimodality in transient gene expression.
C. Zechner, J. Ruess, P. Krenn, S. Pelet, M. Peter, J. Lygeros, and H. Koeppl (2012)
PNAS 109, 8340-8345
   Abstract »    Full Text »    PDF »
Sir2 histone deacetylase prevents programmed cell death caused by sustained activation of the Hog1 stress-activated protein kinase.
A. Vendrell, M. Martinez-Pastor, A. Gonzalez-Novo, A. Pascual-Ahuir, D. A. Sinclair, M. Proft, and F. Posas (2011)
EMBO Rep. 12, 1062-1068
   Abstract »    Full Text »    PDF »
Time-Dependent Quantitative Multicomponent Control of the G1-S Network by the Stress-Activated Protein Kinase Hog1 upon Osmostress.
M. A. Adrover, Z. Zi, A. Duch, J. Schaber, A. Gonzalez-Novo, J. Jimenez, M. Nadal-Ribelles, J. Clotet, E. Klipp, and F. Posas (2011)
Science Signaling 4, ra63
   Abstract »    Full Text »    PDF »
Transient Activation of the HOG MAPK Pathway Regulates Bimodal Gene Expression.
S. Pelet, F. Rudolf, M. Nadal-Ribelles, E. de Nadal, F. Posas, and M. Peter (2011)
Science 332, 732-735
   Abstract »    Full Text »    PDF »
The Activity of Yeast Hog1 MAPK Is Required during Endoplasmic Reticulum Stress Induced by Tunicamycin Exposure.
F. Torres-Quiroz, S. Garcia-Marques, R. Coria, F. Randez-Gil, and J. A. Prieto (2010)
J. Biol. Chem. 285, 20088-20096
   Abstract »    Full Text »    PDF »
Late Phase of the Endoplasmic Reticulum Stress Response Pathway Is Regulated by Hog1 MAP Kinase.
A. A. Bicknell, J. Tourtellotte, and M. Niwa (2010)
J. Biol. Chem. 285, 17545-17555
   Abstract »    Full Text »    PDF »
Establishment of Extracellular Signal-Regulated Kinase 1/2 Bistability and Sustained Activation through Sprouty 2 and Its Relevance for Epithelial Function.
W. Liu, K. Tundwal, Q. Liang, N. Goplen, S. Rozario, N. Quayum, M. Gorska, S. Wenzel, S. Balzar, and R. Alam (2010)
Mol. Cell. Biol. 30, 1783-1799
   Abstract »    Full Text »    PDF »
Multilayered control of gene expression by stress-activated protein kinases.
E. de Nadal and F. Posas (2010)
EMBO J. 29, 4-13
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 5 January 2010.
M. B. Yaffe and A. M. VanHook (2010)
Science Signaling 3, pc1
   Abstract »    Full Text »
New Connections, New Components, Real Dynamics.
J. S. Bader (2009)
Science Signaling 2, pe48
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 30 June 2009.
U. B. Nielsen and A. M. VanHook (2009)
Science Signaling 2, pc12
   Abstract »    Full Text »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882