Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 30 June 2009
Vol. 2, Issue 77, p. ra31
[DOI: 10.1126/scisignal.2000352]

RESEARCH ARTICLES

Therapeutically Targeting ErbB3: A Key Node in Ligand-Induced Activation of the ErbB Receptor–PI3K Axis

Birgit Schoeberl*, Emily A. Pace*, Jonathan B. Fitzgerald*, Brian D. Harms, Lihui Xu, Lin Nie, Bryan Linggi, Ashish Kalra, Violette Paragas, Raghida Bukhalid, Viara Grantcharova, Neeraj Kohli, Kip A. West, Magdalena Leszczyniecka, Michael J. Feldhaus, Arthur J. Kudla, and Ulrik B. Nielsen{dagger}

Merrimack Pharmaceuticals, One Kendall Square, Building 700, Cambridge, MA 02139, USA.

* These authors contributed equally to this work.

Abstract: The signaling network downstream of the ErbB family of receptors has been extensively targeted by cancer therapeutics; however, understanding the relative importance of the different components of the ErbB network is nontrivial. To explore the optimal way to therapeutically inhibit combinatorial, ligand-induced activation of the ErbB–phosphatidylinositol 3-kinase (PI3K) axis, we built a computational model of the ErbB signaling network that describes the most effective ErbB ligands, as well as known and previously unidentified ErbB inhibitors. Sensitivity analysis identified ErbB3 as the key node in response to ligands that can bind either ErbB3 or EGFR (epidermal growth factor receptor). We describe MM-121, a human monoclonal antibody that halts the growth of tumor xenografts in mice and, consistent with model-simulated inhibitor data, potently inhibits ErbB3 phosphorylation in a manner distinct from that of other ErbB-targeted therapies. MM-121, a previously unidentified anticancer therapeutic designed using a systems approach, promises to benefit patients with combinatorial, ligand-induced activation of the ErbB signaling network that are not effectively treated by current therapies targeting overexpressed or mutated oncogenes.

{dagger} To whom correspondence should be addressed. E-mail: unielsen{at}merrimackpharma.com

Citation: B. Schoeberl, E. A. Pace, J. B. Fitzgerald, B. D. Harms, L. Xu, L. Nie, B. Linggi, A. Kalra, V. Paragas, R. Bukhalid, V. Grantcharova, N. Kohli, K. A. West, M. Leszczyniecka, M. J. Feldhaus, A. J. Kudla, U. B. Nielsen, Therapeutically Targeting ErbB3: A Key Node in Ligand-Induced Activation of the ErbB Receptor–PI3K Axis. Sci. Signal. 2, ra31 (2009).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
erbB3 Is an Active Tyrosine Kinase Capable of Homo- and Heterointeractions.
M. P. Steinkamp, S. T. Low-Nam, S. Yang, K. A. Lidke, D. S. Lidke, and B. S. Wilson (2014)
Mol. Cell. Biol. 34, 965-977
   Abstract »    Full Text »    PDF »
Molecular Pathways: HER3 Targeted Therapy.
K. Gala and S. Chandarlapaty (2014)
Clin. Cancer Res. 20, 1410-1416
   Abstract »    Full Text »    PDF »
MM-141, an IGF-IR- and ErbB3-Directed Bispecific Antibody, Overcomes Network Adaptations That Limit Activity of IGF-IR Inhibitors.
J. B. Fitzgerald, B. W. Johnson, J. Baum, S. Adams, S. Iadevaia, J. Tang, V. Rimkunas, L. Xu, N. Kohli, R. Rennard, et al. (2014)
Mol. Cancer Ther. 13, 410-425
   Abstract »    Full Text »    PDF »
A Systems Biology Approach to Personalizing Therapeutic Combinations.
L. N. Kwong, T. P. Heffernan, and L. Chin (2013)
Cancer Discovery 3, 1339-1344
   Abstract »    Full Text »    PDF »
Computational Modeling of ERBB2-Amplified Breast Cancer Identifies Combined ErbB2/3 Blockade as Superior to the Combination of MEK and AKT Inhibitors.
D. C. Kirouac, J. Y. Du, J. Lahdenranta, R. Overland, D. Yarar, V. Paragas, E. Pace, C. F. McDonagh, U. B. Nielsen, and M. D. Onsum (2013)
Science Signaling 6, ra68
   Abstract »    Full Text »    PDF »
Models of signalling networks - what cell biologists can gain from them and give to them.
K. A. Janes and D. A. Lauffenburger (2013)
J. Cell Sci. 126, 1913-1921
   Abstract »    Full Text »    PDF »
Using Partial Least Squares Regression to Analyze Cellular Response Data.
P. K. Kreeger (2013)
Science Signaling 6, tr7
   Abstract »    Full Text »    PDF »
HER3 Overexpression and Survival in Solid Tumors: A Meta-analysis.
A. Ocana, F. Vera-Badillo, B. Seruga, A. Templeton, A. Pandiella, and E. Amir (2013)
J Natl Cancer Inst 105, 266-273
   Abstract »    Full Text »    PDF »
Understanding cancer mechanisms through network dynamics.
T. M. K. Cheng, S. Gulati, R. Agius, and P. A. Bates (2012)
Briefings in Functional Genomics 11, 543-560
   Abstract »    Full Text »    PDF »
Computational Medicine: Translating Models to Clinical Care.
R. L. Winslow, N. Trayanova, D. Geman, and M. I. Miller (2012)
Science Translational Medicine 4, 158rv11
   Full Text »    PDF »
Computational Approaches for Analyzing Information Flow in Biological Networks.
B. Kholodenko, M. B. Yaffe, and W. Kolch (2012)
Science Signaling 5, re1
   Abstract »    Full Text »    PDF »
Antitumor Activity of a Novel Bispecific Antibody That Targets the ErbB2/ErbB3 Oncogenic Unit and Inhibits Heregulin-Induced Activation of ErbB3.
C. F. McDonagh, A. Huhalov, B. D. Harms, S. Adams, V. Paragas, S. Oyama, B. Zhang, L. Luus, R. Overland, S. Nguyen, et al. (2012)
Mol. Cancer Ther. 11, 582-593
   Abstract »    Full Text »    PDF »
Reduction of Complex Signaling Networks to a Representative Kernel.
J.-R. Kim, J. Kim, Y.-K. Kwon, H.-Y. Lee, P. Heslop-Harrison, and K.-H. Cho (2011)
Science Signaling 4, ra35
   Abstract »    Full Text »    PDF »
Combining phage and staphylococcal surface display for generation of ErbB3-specific Affibody molecules.
N. Kronqvist, M. Malm, L. Gostring, E. Gunneriusson, M. Nilsson, I. Hoiden Guthenberg, L. Gedda, F. Y. Frejd, S. Stahl, and J. Lofblom (2011)
Protein Eng. Des. Sel. 24, 385-396
   Abstract »    Full Text »    PDF »
Receptor Tyrosine Kinase Coactivation Networks in Cancer.
A. M. Xu and P. H. Huang (2010)
Cancer Res. 70, 3857-3860
   Abstract »    Full Text »    PDF »
An ErbB3 Antibody, MM-121, Is Active in Cancers with Ligand-Dependent Activation.
B. Schoeberl, A. C. Faber, D. Li, M.-C. Liang, K. Crosby, M. Onsum, O. Burenkova, E. Pace, Z. Walton, L. Nie, et al. (2010)
Cancer Res. 70, 2485-2494
   Abstract »    Full Text »    PDF »
2009: Signaling Breakthroughs of the Year.
E. M. Adler (2010)
Science Signaling 3, eg1
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 5 January 2010.
M. B. Yaffe and A. M. VanHook (2010)
Science Signaling 3, pc1
   Abstract »    Full Text »
Cancer systems biology: a network modeling perspective.
P. K. Kreeger and D. A. Lauffenburger (2010)
Carcinogenesis 31, 2-8
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 30 June 2009.
U. B. Nielsen and A. M. VanHook (2009)
Science Signaling 2, pc12
   Abstract »    Full Text »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882