Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 8 September 2009
Vol. 2, Issue 87, p. ra51
[DOI: 10.1126/scisignal.2000396]

RESEARCH ARTICLES

Proteomic Analysis of Integrin-Associated Complexes Identifies RCC2 as a Dual Regulator of Rac1 and Arf6

Jonathan D. Humphries1,2*, Adam Byron1,2*, Mark D. Bass1,2, Sue E. Craig1,2, John W. Pinney2{dagger}, David Knight2, and Martin J. Humphries1,2{ddagger}

1 Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK.
2 Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.

* These authors contributed equally to this work.

{dagger} Present address: Centre for Bioinformatics, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK.

Abstract: The binding of integrin adhesion receptors to their extracellular matrix ligands controls cell morphology, movement, survival, and differentiation in various developmental, homeostatic, and disease processes. Here, we report a methodology to isolate complexes associated with integrin adhesion receptors, which, like other receptor-associated signaling complexes, have been refractory to proteomic analysis. Quantitative, comparative analyses of the proteomes of two receptor-ligand pairs, {alpha}4β1–vascular cell adhesion molecule–1 and {alpha}5β1–fibronectin, defined both core and receptor-specific components. Regulator of chromosome condensation–2 (RCC2) was detected in the {alpha}5β1–fibronectin signaling network at an intersection between the Rac1 and adenosine 5'-diphosphate ribosylation factor 6 (Arf6) subnetworks. RCC2 knockdown enhanced fibronectin-induced activation of both Rac1 and Arf6 and accelerated cell spreading, suggesting that RCC2 limits the signaling required for membrane protrusion and delivery. Dysregulation of Rac1 and Arf6 function by RCC2 knockdown also abolished persistent migration along fibronectin fibers, indicating a functional role for RCC2 in directional cell movement. This proteomics workflow now opens the way to further dissection and systems-level analyses of adhesion signaling.

{ddagger} To whom correspondence should be addressed. E-mail: martin.humphries{at}manchester.ac.uk

Citation: J. D. Humphries, A. Byron, M. D. Bass, S. E. Craig, J. W. Pinney, D. Knight, M. J. Humphries, Proteomic Analysis of Integrin-Associated Complexes Identifies RCC2 as a Dual Regulator of Rac1 and Arf6. Sci. Signal. 2, ra51 (2009).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Protein Kinase C, Focal Adhesions and the Regulation of Cell Migration.
B. S. Fogh, H. A. B. Multhaupt, and J. R. Couchman (2014)
Journal of Histochemistry & Cytochemistry 62, 172-184
   Abstract »    Full Text »    PDF »
Glomerular Cell Cross-Talk Influences Composition and Assembly of Extracellular Matrix.
A. Byron, M. J. Randles, J. D. Humphries, A. Mironov, H. Hamidi, S. Harris, P. W. Mathieson, M. A. Saleem, S. C. Satchell, R. Zent, et al. (2014)
J. Am. Soc. Nephrol.
   Abstract »
Global Analysis Reveals the Complexity of the Human Glomerular Extracellular Matrix.
R. Lennon, A. Byron, J. D. Humphries, M. J. Randles, A. Carisey, S. Murphy, D. Knight, P. E. Brenchley, R. Zent, and M. J. Humphries (2014)
J. Am. Soc. Nephrol.
   Abstract »
Characterization of Native Protein Complexes and Protein Isoform Variation Using Size-fractionation-based Quantitative Proteomics.
K. J. Kirkwood, Y. Ahmad, M. Larance, and A. I. Lamond (2013)
Mol. Cell. Proteomics 12, 3851-3873
   Abstract »    Full Text »    PDF »
Rac1 is deactivated at integrin activation sites through an IQGAP1-filamin-A-RacGAP1 pathway.
G. Jacquemet, M. R. Morgan, A. Byron, J. D. Humphries, C. K. Choi, C. S. Chen, P. T. Caswell, and M. J. Humphries (2013)
J. Cell Sci. 126, 4121-4135
   Abstract »    Full Text »    PDF »
Calcium and Calmodulin-dependent Serine/Threonine Protein Kinase Type II (CaMKII)-mediated Intramolecular Opening of Integrin Cytoplasmic Domain-associated Protein-1 (ICAP-1{alpha}) Negatively Regulates {beta}1 Integrins.
A. Millon-Fremillon, M. Brunner, N. Abed, E. Collomb, A.-S. Ribba, M. R. Block, C. Albiges-Rizo, and D. Bouvard (2013)
J. Biol. Chem. 288, 20248-20260
   Abstract »    Full Text »    PDF »
Comparative Proteomic Analysis of Supportive and Unsupportive Extracellular Matrix Substrates for Human Embryonic Stem Cell Maintenance.
D. Soteriou, B. Iskender, A. Byron, J. D. Humphries, S. Borg-Bartolo, M.-C. Haddock, M. A. Baxter, D. Knight, M. J. Humphries, and S. J. Kimber (2013)
J. Biol. Chem. 288, 18716-18731
   Abstract »    Full Text »    PDF »
Mechanosensitivity and compositional dynamics of cell-matrix adhesions.
H. B. Schiller and R. Fassler (2013)
EMBO Rep. 14, 509-519
   Abstract »    Full Text »    PDF »
Stabilization of integrin-linked kinase by the Hsp90-CHIP axis impacts cellular force generation, migration and the fibrotic response.
K. Radovanac, J. Morgner, J.-N. Schulz, K. Blumbach, C. Patterson, T. Geiger, M. Mann, T. Krieg, B. Eckes, R. Fassler, et al. (2013)
EMBO J. 32, 1409-1424
   Abstract »    Full Text »    PDF »
The Intracellular Interactome of Tetraspanin-enriched Microdomains Reveals Their Function as Sorting Machineries toward Exosomes.
D. Perez-Hernandez, C. Gutierrez-Vazquez, I. Jorge, S. Lopez-Martin, A. Ursa, F. Sanchez-Madrid, J. Vazquez, and M. Yanez-Mo (2013)
J. Biol. Chem. 288, 11649-11661
   Abstract »    Full Text »    PDF »
The Polarity Protein Scrib Is Essential for Directed Endothelial Cell Migration.
U. R. Michaelis, E. Chavakis, C. Kruse, B. Jungblut, D. Kaluza, K. Wandzioch, Y. Manavski, H. Heide, M.-J. Santoni, M. Potente, et al. (2013)
Circ. Res. 112, 924-934
   Abstract »    Full Text »    PDF »
Martin Humphries: Attached to adhesion.
C. Sedwick (2013)
J. Cell Biol. 200, 554-555
   Full Text »    PDF »
Mena binds {alpha}5 integrin directly and modulates {alpha}5{beta}1 function.
S. L. Gupton, D. Riquelme, S. K. Hughes-Alford, J. Tadros, S. S. Rudina, R. O. Hynes, D. Lauffenburger, and F. B. Gertler (2012)
J. Cell Biol. 198, 657-676
   Abstract »    Full Text »    PDF »
Targeting and transport: How microtubules control focal adhesion dynamics.
S. Stehbens and T. Wittmann (2012)
J. Cell Biol. 198, 481-489
   Abstract »    Full Text »    PDF »
IQGAP1 is necessary for pulmonary vascular barrier protection in murine acute lung injury and pneumonia.
M. Bhattacharya, G. Su, X. Su, J. A. Oses-Prieto, J. T. Li, X. Huang, H. Hernandez, A. Atakilit, A. L. Burlingame, M. A. Matthay, et al. (2012)
Am J Physiol Lung Cell Mol Physiol 303, L12-L19
   Abstract »    Full Text »    PDF »
A functional genetic screen reveals new regulators of {beta}1-integrin activity.
T. Pellinen, J. K. Rantala, A. Arjonen, J.-P. Mpindi, O. Kallioniemi, and J. Ivaska (2012)
J. Cell Sci. 125, 649-661
   Abstract »    Full Text »    PDF »
Induction of membrane circular dorsal ruffles requires co-signalling of integrin-ILK-complex and EGF receptor.
S. B. Azimifar, R. T. Bottcher, S. Zanivan, C. Grashoff, M. Kruger, K. R. Legate, M. Mann, and R. Fassler (2012)
J. Cell Sci. 125, 435-448
   Abstract »    Full Text »    PDF »
Defining the Disulfide Bonds of Insulin-like Growth Factor-binding Protein-5 by Tandem Mass Spectrometry with Electron Transfer Dissociation and Collision-induced Dissociation.
M. Nili, A. Mukherjee, U. Shinde, L. David, and P. Rotwein (2012)
J. Biol. Chem. 287, 1510-1519
   Abstract »    Full Text »    PDF »
Comparative Proteomic Analysis of a Cytosolic Fraction from {beta}3 Integrin-deficient Cells.
J. A. Bush, H. Kitaura, Y. Ma, S. L. Teitelbaum, F. P. Ross, and J. W. Smith (2012)
Cancer Genomics Proteomics 9, 1-13
   Abstract »    Full Text »    PDF »
Selenoprotein K Is a Novel Target of m-Calpain, and Cleavage Is Regulated by Toll-like Receptor-induced Calpastatin in Macrophages.
Z. Huang, F. W. Hoffmann, R. L. Norton, A. C. Hashimoto, and P. R. Hoffmann (2011)
J. Biol. Chem. 286, 34830-34838
   Abstract »    Full Text »    PDF »
Molecular Architecture and Function of Matrix Adhesions.
B. Geiger and K. M. Yamada (2011)
Cold Spring Harb Perspect Biol 3, a005033
   Abstract »    Full Text »    PDF »
Analyzing the Anatomy of Integrin Adhesions.
A. Byron (2011)
Science Signaling 4, jc3
   Abstract »    Full Text »    PDF »
Proteomic Analysis of Integrin Adhesion Complexes.
A. Byron, J. D. Humphries, M. D. Bass, D. Knight, and M. J. Humphries (2011)
Science Signaling 4, pt2
   Abstract »    Full Text »    PDF »
Quantitative proteomics of the integrin adhesome show a myosin II-dependent recruitment of LIM domain proteins.
H. B. Schiller, C. C. Friedel, C. Boulegue, and R. Fassler (2011)
EMBO Rep. 12, 259-266
   Abstract »    Full Text »    PDF »
The Collagen Family.
S. Ricard-Blum (2011)
Cold Spring Harb Perspect Biol 3, a004978
   Abstract »    Full Text »    PDF »
{alpha}v{beta}3 integrin spatially regulates VASP and RIAM to control adhesion dynamics and migration.
D. C. Worth, K. Hodivala-Dilke, S. D. Robinson, S. J. King, P. E. Morton, F. B. Gertler, M. J. Humphries, and M. Parsons (2010)
J. Cell Biol. 189, 369-383
   Abstract »    Full Text »    PDF »
2009: Signaling Breakthroughs of the Year.
E. M. Adler (2010)
Science Signaling 3, eg1
   Abstract »    Full Text »    PDF »
Integrin Proteomes Reveal a New Guide for Cell Motility.
E. H. J. Danen (2009)
Science Signaling 2, pe58
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882