Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. STKE, 10 February 2004
Vol. 2004, Issue 219, p. pl5
[DOI: 10.1126/stke.2192004pl5]

PROTOCOLS

Imaging Calcium Concentration Dynamics in Small Neuronal Compartments

Ryohei Yasuda1, Esther A. Nimchinsky1,3, Volker Scheuss1, Thomas A. Pologruto1,2, Thomas G. Oertner1,4, Bernardo L. Sabatini1,5, and Karel Svoboda1*

1Howard Hughes Medical Institute, The Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
2Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA.
3Present address: Center for Molecular and Behavioral Neuroscience Aidekman Research Center, Rutgers State University, Newark Campus, 197 University Avenue, Newark, NJ 07102, USA.
4Present address: Friedrich Miescher Institute, WRO-1066.4.10, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
5Present address: Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.

Abstract: Calcium and its regulation play central roles diverse physiologic processes. Quantification of calcium concentrations ([Ca2+]) in small neuronal compartments is crucial to understanding Ca2+-dependent signaling. Here, we describe techniques that are optimized for 2-photon imaging of [Ca2+] dynamics in small compartments such as dendrites and dendritic spines.

*Corresponding author. Telephone, 516-367-6878; fax, 516-367-8866; e-mail, svoboda{at}cshl.edu

Citation: R. Yasuda, E. A. Nimchinsky, V. Scheuss, T. A. Pologruto, T. G. Oertner, B. L. Sabatini, K. Svoboda, Imaging Calcium Concentration Dynamics in Small Neuronal Compartments. Sci. STKE 2004, pl5 (2004).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Neurofibromin Is the Major Ras Inactivator in Dendritic Spines.
A. F. Oliveira and R. Yasuda (2014)
J. Neurosci. 34, 776-783
   Abstract »    Full Text »    PDF »
Long-Distance Integration of Nuclear ERK Signaling Triggered by Activation of a Few Dendritic Spines.
S. Zhai, E. D. Ark, P. Parra-Bueno, and R. Yasuda (2013)
Science 342, 1107-1111
   Abstract »    Full Text »    PDF »
Developmental Reduction of Asynchronous GABA Release from Neocortical Fast-Spiking Neurons.
M. Jiang, M. Yang, L. Yin, X. Zhang, and Y. Shu (2013)
Cereb Cortex
   Abstract »    Full Text »    PDF »
GABAergic Circuits Control Spike-Timing-Dependent Plasticity.
V. Paille, E. Fino, K. Du, T. Morera-Herreras, S. Perez, J. H. Kotaleski, and L. Venance (2013)
J. Neurosci. 33, 9353-9363
   Abstract »    Full Text »    PDF »
Metabotropic NMDA receptor function is required for NMDA receptor-dependent long-term depression.
S. Nabavi, H. W. Kessels, S. Alfonso, J. Aow, R. Fox, and R. Malinow (2013)
PNAS 110, 4027-4032
   Abstract »    Full Text »    PDF »
Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging.
J. Akerboom, T.-W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderon, F. Esposti, B. G. Borghuis, X. R. Sun, et al. (2012)
J. Neurosci. 32, 13819-13840
   Abstract »    Full Text »    PDF »
Imaging Neuronal Activity with Genetically Encoded Calcium Indicators.
L. Tian, S. A. Hires, and L. L. Looger (2012)
Cold Spring Harb Protoc 2012, pdb.top069609
   Abstract »    Full Text »    PDF »
Nonlinearity of two-photon Ca2+ imaging yields distorted measurements of tuning for V1 neuronal populations.
I. Nauhaus, K. J. Nielsen, and E. M. Callaway (2012)
J Neurophysiol 107, 923-936
   Abstract »    Full Text »    PDF »
Correlated Variations in the Parameters That Regulate Dendritic Calcium Signaling in Mouse Retinal Ganglion Cells.
A. J. Gartland and P. B. Detwiler (2011)
J. Neurosci. 31, 18353-18363
   Abstract »    Full Text »    PDF »
Sustained Firing of Cartwheel Cells in the Dorsal Cochlear Nucleus Evokes Endocannabinoid Release and Retrograde Suppression of Parallel Fiber Synapses.
M. Sedlacek, P. W. Tipton, and S. D. Brenowitz (2011)
J. Neurosci. 31, 15807-15817
   Abstract »    Full Text »    PDF »
A Ca2+ Threshold for Induction of Spike-Timing-Dependent Depression in the Mouse Striatum.
T. Shindou, M. Ochi-Shindou, and J. R. Wickens (2011)
J. Neurosci. 31, 13015-13022
   Abstract »    Full Text »    PDF »
Imaging Light Responses of Targeted Neuron Populations in the Rodent Retina.
B. G. Borghuis, L. Tian, Y. Xu, S. S. Nikonov, N. Vardi, B. V. Zemelman, and L. L. Looger (2011)
J. Neurosci. 31, 2855-2867
   Abstract »    Full Text »    PDF »
Location and Function of the Slow Afterhyperpolarization Channels in the Basolateral Amygdala.
J. M. Power, C. Bocklisch, P. Curby, and P. Sah (2011)
J. Neurosci. 31, 526-537
   Abstract »    Full Text »    PDF »
Low-Threshold Ca2+ Current Amplifies Distal Dendritic Signaling in Thalamic Reticular Neurons.
S. R. Crandall, G. Govindaiah, and C. L. Cox (2010)
J. Neurosci. 30, 15419-15429
   Abstract »    Full Text »    PDF »
AMPA receptors gate spine Ca2+ transients and spike-timing-dependent potentiation.
N. Holbro, A. Grunditz, J. S. Wiegert, and T. G. Oertner (2010)
PNAS 107, 15975-15980
   Abstract »    Full Text »    PDF »
Somatic Spikes Regulate Dendritic Signaling in Small Neurons in the Absence of Backpropagating Action Potentials.
M. H. Myoga, M. Beierlein, and W. G. Regehr (2009)
J. Neurosci. 29, 7803-7814
   Abstract »    Full Text »    PDF »
Crystal Structures of the GCaMP Calcium Sensor Reveal the Mechanism of Fluorescence Signal Change and Aid Rational Design.
J. Akerboom, J. D. V. Rivera, M. M. R. Guilbe, E. C. A. Malave, H. H. Hernandez, L. Tian, S. A. Hires, J. S. Marvin, L. L. Looger, and E. R. Schreiter (2009)
J. Biol. Chem. 284, 6455-6464
   Abstract »    Full Text »    PDF »
Spine Neck Plasticity Controls Postsynaptic Calcium Signals through Electrical Compartmentalization.
A. Grunditz, N. Holbro, L. Tian, Y. Zuo, and T. G. Oertner (2008)
J. Neurosci. 28, 13457-13466
   Abstract »    Full Text »    PDF »
Fidelity of Complex Spike-Mediated Synaptic Transmission between Inhibitory Interneurons.
M. T. Roberts, K. J. Bender, and L. O. Trussell (2008)
J. Neurosci. 28, 9440-9450
   Abstract »    Full Text »    PDF »
Fluorescence Changes of Genetic Calcium Indicators and OGB-1 Correlated with Neural Activity and Calcium In Vivo and In Vitro.
T. Hendel, M. Mank, B. Schnell, O. Griesbeck, A. Borst, and D. F. Reiff (2008)
J. Neurosci. 28, 7399-7411
   Abstract »    Full Text »    PDF »
Nonlinear [Ca2+] Signaling in Dendrites and Spines Caused by Activity-Dependent Depression of Ca2+ Extrusion.
V. Scheuss, R. Yasuda, A. Sobczyk, and K. Svoboda (2006)
J. Neurosci. 26, 8183-8194
   Abstract »    Full Text »    PDF »
Microdomains of Intracellular Ca2+: Molecular Determinants and Functional Consequences.
R. Rizzuto and T. Pozzan (2006)
Physiol Rev 86, 369-408
   Abstract »    Full Text »    PDF »
NMDA Receptor Subunit-Dependent [Ca2+] Signaling in Individual Hippocampal Dendritic Spines.
A. Sobczyk, V. Scheuss, and K. Svoboda (2005)
J. Neurosci. 25, 6037-6046
   Abstract »    Full Text »    PDF »
In Vivo Performance of Genetically Encoded Indicators of Neural Activity in Flies.
D. F. Reiff, A. Ihring, G. Guerrero, E. Y. Isacoff, M. Joesch, J. Nakai, and A. Borst (2005)
J. Neurosci. 25, 4766-4778
   Abstract »    Full Text »    PDF »
Monitoring Neural Activity and [Ca2+] with Genetically Encoded Ca2+ Indicators.
T. A. Pologruto, R. Yasuda, and K. Svoboda (2004)
J. Neurosci. 24, 9572-9579
   Abstract »    Full Text »    PDF »
The Number of Glutamate Receptors Opened by Synaptic Stimulation in Single Hippocampal Spines.
E. A. Nimchinsky, R. Yasuda, T. G. Oertner, and K. Svoboda (2004)
J. Neurosci. 24, 2054-2064
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882