Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. STKE, 18 July 2006
Vol. 2006, Issue 344, p. re6
[DOI: 10.1126/stke.3442006re6]

Rules for Modeling Signal-Transduction Systems

William S. Hlavacek1*, James R. Faeder2, Michael L. Blinov3, Richard G. Posner4, Michael Hucka5, and Walter Fontana6

1Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
2Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
3Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030, USA.
4Translational Genomics Research Institute, Phoenix, AZ 85004, USA.
5Control and Dynamical Systems, California Institute of Technology, Pasadena, CA 91125, USA.
6Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.

Abstract: Formalized rules for protein-protein interactions have recently been introduced to represent the binding and enzymatic activities of proteins in cellular signaling. Rules encode an understanding of how a system works in terms of the biomolecules in the system and their possible states and interactions. A set of rules can be as easy to read as a diagrammatic interaction map, but unlike most such maps, rules have precise interpretations. Rules can be processed to automatically generate a mathematical or computational model for a system, which enables explanatory and predictive insights into the system’s behavior. Rules are independent units of a model specification that facilitate model revision. Instead of changing a large number of equations or lines of code, as may be required in the case of a conventional mathematical model, a protein interaction can be introduced or modified simply by adding or changing a single rule that represents the interaction of interest. Rules can be defined and visualized by using graphs, so no specialized training in mathematics or computer science is necessary to create models or to take advantage of the representational precision of rules. Rules can be encoded in a machine-readable format to enable electronic storage and exchange of models, as well as basic knowledge about protein-protein interactions. Here, we review the motivation for rule-based modeling; applications of the approach; and issues that arise in model specification, simulation, and testing. We also discuss rule visualization and exchange and the software available for rule-based modeling.

*Corresponding author. E-mail, wish{at}lanl.gov

Citation: W. S. Hlavacek, J. R. Faeder, M. L. Blinov, R. G. Posner, M. Hucka, W. Fontana, Rules for Modeling Signal-Transduction Systems. Sci. STKE 2006, re6 (2006).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
How to deal with large models?.
W. S. Hlavacek (2014)
Mol Syst Biol 5, 240
   Full Text »    PDF »
Systems-level interactions between insulin-EGF networks amplify mitogenic signaling.
N. Borisov, E. Aksamitiene, A. Kiyatkin, S. Legewie, J. Berkhout, T. Maiwald, N. P. Kaimachnikov, J. Timmer, J. B. Hoek, and B. N. Kholodenko (2014)
Mol Syst Biol 5, 256
   Abstract »    Full Text »    PDF »
Competing G protein-coupled receptor kinases balance G protein and {beta}-arrestin signaling.
D. Heitzler, G. Durand, N. Gallay, A. Rizk, S. Ahn, J. Kim, J. D. Violin, L. Dupuy, C. Gauthier, V. Piketty, et al. (2014)
Mol Syst Biol 8, 590
   Abstract »    Full Text »    PDF »
Programming biological models in Python using PySB.
C. F. Lopez, J. L. Muhlich, J. A. Bachman, and P. K. Sorger (2014)
Mol Syst Biol 9, 646
   Abstract »    Full Text »    PDF »
Cell responses only partially shape cell-to-cell variations in protein abundances in Escherichia coli chemotaxis.
S. Mukherjee, S.-C. Seok, V. J. Vieland, and J. Das (2013)
PNAS 110, 18531-18536
   Abstract »    Full Text »    PDF »
Decoding the Language of Phosphorylation Site Dynamics.
L. A. Chylek (2013)
Science Signaling 6, jc2
   Abstract »    Full Text »    PDF »
The Simmune Modeler visual interface for creating signaling networks based on bi-molecular interactions.
F. Zhang, B. R. Angermann, and M. Meier-Schellersheim (2013)
Bioinformatics 29, 1229-1230
   Abstract »    Full Text »    PDF »
A Computational Model for Early Events in B Cell Antigen Receptor Signaling: Analysis of the Roles of Lyn and Fyn.
D. Barua, W. S. Hlavacek, and T. Lipniacki (2012)
J. Immunol. 189, 646-658
   Abstract »    Full Text »    PDF »
Computational Approaches for Analyzing Information Flow in Biological Networks.
B. Kholodenko, M. B. Yaffe, and W. Kolch (2012)
Science Signaling 5, re1
   Abstract »    Full Text »    PDF »
The Evolution of the Phage Shock Protein Response System: Interplay between Protein Function, Genomic Organization, and System Function.
M. Huvet, T. Toni, X. Sheng, T. Thorne, G. Jovanovic, C. Engl, M. Buck, J. W. Pinney, and M. P. H. Stumpf (2011)
Mol. Biol. Evol. 28, 1141-1155
   Abstract »    Full Text »    PDF »
CplexA: a Mathematica package to study macromolecular-assembly control of gene expression.
J. M. G. Vilar and L. Saiz (2010)
Bioinformatics 26, 2060-2061
   Abstract »    Full Text »    PDF »
Decoupling of Receptor and Downstream Signals in the Akt Pathway by Its Low-Pass Filter Characteristics.
K. A. Fujita, Y. Toyoshima, S. Uda, Y.-i. Ozaki, H. Kubota, and S. Kuroda (2010)
Science Signaling 3, ra56
   Abstract »    Full Text »    PDF »
Perspectives for Computer Modeling in the Study of T Cell Activation.
J. Coward, R. N. Germain, and G. Altan-Bonnet (2010)
Cold Spring Harb Perspect Biol 2, a005538
   Abstract »    Full Text »    PDF »
Hematopoiesis and its disorders: a systems biology approach.
Z. L. Whichard, C. A. Sarkar, M. Kimmel, and S. J. Corey (2010)
Blood 115, 2339-2347
   Abstract »    Full Text »    PDF »
The Complexity of Cell Signaling and the Need for a New Mechanics.
W. S. Hlavacek and J. R. Faeder (2009)
Science Signaling 2, pe46
   Abstract »    Full Text »    PDF »
Computational systems biology of the cell cycle.
A. Csikasz-Nagy (2009)
Brief Bioinform 10, 424-434
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 30 June 2009.
U. B. Nielsen and A. M. VanHook (2009)
Science Signaling 2, pc12
   Abstract »    Full Text »
GetBonNie for building, analyzing and sharing rule-based models.
B. Hu, G. Matthew Fricke, J. R. Faeder, R. G. Posner, and W. S. Hlavacek (2009)
Bioinformatics 25, 1457-1460
   Abstract »    Full Text »    PDF »
Simulation of large-scale rule-based models.
J. Colvin, M. I. Monine, J. R. Faeder, W. S. Hlavacek, D. D. Von Hoff, and R. G. Posner (2009)
Bioinformatics 25, 910-917
   Abstract »    Full Text »    PDF »
Kinetic Proofreading of Ligand-Fc{varepsilon}RI Interactions May Persist beyond LAT Phosphorylation.
C. Torigoe, J. R. Faeder, J. M. Oliver, and B. Goldstein (2007)
J. Immunol. 178, 3530-3535
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882