Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. STKE, 5 December 2006
Vol. 2006, Issue 364, p. cm7
[DOI: 10.1126/stke.3642006cm7]

CONNECTIONS MAP OVERVIEWS

Notch Signaling Pathway

Matthias Ehebauer, Penelope Hayward, and Alfonso Martinez-Arias*

Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.

Abstract: Notch is a receptor that mediates intercellular signaling through a pathway conserved across the metazoa. It is involved in cell fate assignation and pattern formation during development. The receptor acts as a membrane-tethered transcription factor and is activated by members of the Delta, Serrate, Lag-2 family of Notch ligands, which trigger two successive proteolytic cleavages of the receptor. The second cleavage releases the intracellular domain of Notch, which translocates to the nucleus, where it interacts with the CSL family of transcriptional regulators and forms part of a Notch target gene–activating complex. In the absence of signaling, CSL [CBF1, Su(H), Lag-1] regulators repress Notch target genes through interactions with several transcriptional co-repressors that recruit histone deacetylases and other chromatin-modifying enzymes. After forming, the transcription-activating binary Notch intracellular domain–CSL complex recruits several proteins that facilitate transcription, among them the coactivator MAM and histone acetylases. Transcription of target genes is terminated when the Notch intracellular domain is degraded in a proteasome-dependent manner.

*Corresponding author. E-mail, ama11{at}hermes.cam.ac.uk

Citation: M. Ehebauer, P. Hayward, A. Martinez-Arias, Notch Signaling Pathway. Sci. STKE 2006, cm7 (2006).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Nuclear Factor of Activated T-cells (NFAT)c2 Inhibits Notch Receptor Signaling in Osteoblasts.
S. Zanotti, A. Smerdel-Ramoya, and E. Canalis (2013)
J. Biol. Chem. 288, 624-632
   Abstract »    Full Text »    PDF »
Cohesins Repress Kaposi's Sarcoma-Associated Herpesvirus Immediate Early Gene Transcription during Latency.
H.-S. Chen, P. Wikramasinghe, L. Showe, and P. M. Lieberman (2012)
J. Virol. 86, 9454-9464
   Abstract »    Full Text »    PDF »
Notch system in the linkage of innate and adaptive immunity.
T. Ito, J. M. Connett, S. L. Kunkel, and A. Matsukawa (2012)
J. Leukoc. Biol. 92, 59-65
   Abstract »    Full Text »    PDF »
The transcriptional corepressor SMRTER influences both Notch and ecdysone signaling during Drosophila development.
B. W. Heck, B. Zhang, X. Tong, Z. Pan, W.-M. Deng, and C.-C. Tsai (2012)
Biology Open 1, 182-196
   Abstract »    Full Text »    PDF »
The transcriptional corepressor SMRTER influences both Notch and ecdysone signaling during Drosophila development.
B. W. Heck, B. Zhang, X. Tong, Z. Pan, W.-M. Deng, and C.-C. Tsai (2012)
Biology Open
   Abstract »    Full Text »    PDF »
Soluble Jagged-1 Inhibits Neointima Formation by Attenuating Notch-Herp2 Signaling.
V. Caolo, H. M. Schulten, Z. W. Zhuang, M. Murakami, A. Wagenaar, S. Verbruggen, D. G. M. Molin, and M. J. Post (2011)
Arterioscler Thromb Vasc Biol 31, 1059-1065
   Abstract »    Full Text »    PDF »
Intracellular Pathogen Sensor NOD2 Programs Macrophages to Trigger Notch1 Activation.
K. Bansal and K. N. Balaji (2011)
J. Biol. Chem. 286, 5823-5835
   Abstract »    Full Text »    PDF »
Reciprocal Regulation of Notch and Nuclear Factor of Activated T-cells (NFAT) c1 Transactivation in Osteoblasts.
S. Zanotti, A. Smerdel-Ramoya, and E. Canalis (2011)
J. Biol. Chem. 286, 4576-4588
   Abstract »    Full Text »    PDF »
The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch-mediated signaling.
S. Weber, M. T. Niessen, J. Prox, R. Lullmann-Rauch, A. Schmitz, R. Schwanbeck, C. P. Blobel, E. Jorissen, B. de Strooper, C. M. Niessen, et al. (2011)
Development 138, 495-505
   Abstract »    Full Text »    PDF »
Notch Ligand Delta-Like 4 Regulates Development and Pathogenesis of Allergic Airway Responses by Modulating IL-2 Production and Th2 Immunity.
S. Jang, M. Schaller, A. A. Berlin, and N. W. Lukacs (2010)
J. Immunol. 185, 5835-5844
   Abstract »    Full Text »    PDF »
The Perception of Cytokinin: A Story 50 Years in the Making.
J. J. Kieber and G. E. Schaller (2010)
Plant Physiology 154, 487-492
   Full Text »    PDF »
Activation of a latent nuclear localization signal in the NH2 terminus of {gamma}-ENaC initiates feedback regulation of channel activity.
E. Mironova and J. D. Stockand (2010)
Am J Physiol Renal Physiol 298, F1188-F1196
   Abstract »    Full Text »    PDF »
Nitric Oxide Is Involved in Mycobacterium bovis Bacillus Calmette-Guerin-Activated Jagged1 and Notch1 Signaling.
N. Kapoor, Y. Narayana, S. A. Patil, and K. N. Balaji (2010)
J. Immunol. 184, 3117-3126
   Abstract »    Full Text »    PDF »
Induction of ectopic Myc target gene JAG2 augments hypoxic growth and tumorigenesis in a human B-cell model.
J. T. Yustein, Y.-C. Liu, P. Gao, C. Jie, A. Le, M. Vuica-Ross, W. J. Chng, C. G. Eberhart, P. L. Bergsagel, and C. V. Dang (2010)
PNAS 107, 3534-3539
   Abstract »    Full Text »    PDF »
Notch and the Skeleton.
S. Zanotti and E. Canalis (2010)
Mol. Cell. Biol. 30, 886-896
   Abstract »    Full Text »    PDF »
Glycogene Expression in Conjunctiva of Patients with Dry Eye: Downregulation of Notch Signaling.
F. Mantelli, L. Schaffer, R. Dana, S. R. Head, and P. Argueso (2009)
Invest. Ophthalmol. Vis. Sci. 50, 2666-2672
   Abstract »    Full Text »    PDF »
M. bovis BCG induced expression of COX-2 involves nitric oxide-dependent and -independent signaling pathways.
K. Bansal, Y. Narayana, S. A. Patil, and K. N. Balaji (2009)
J. Leukoc. Biol. 85, 804-816
   Abstract »    Full Text »    PDF »
{gamma}-Secretase Limits the Inflammatory Response Through the Processing of LRP1.
K. Zurhove, C. Nakajima, J. Herz, H. H. Bock, and P. May (2008)
Science Signaling 1, ra15
   Abstract »    Full Text »    PDF »
Bortezomib-Resistant Nuclear Factor-{kappa}B Activity in Multiple Myeloma Cells.
S. Markovina, N. S. Callander, S. L. O'Connor, J. Kim, J. E. Werndli, M. Raschko, C. P. Leith, B. S. Kahl, K. Kim, and S. Miyamoto (2008)
Mol. Cancer Res. 6, 1356-1364
   Abstract »    Full Text »    PDF »
Zfp64 participates in Notch signaling and regulates differentiation in mesenchymal cells.
K. Sakamoto, Y. Tamamura, K.-i. Katsube, and A. Yamaguchi (2008)
J. Cell Sci. 121, 1613-1623
   Abstract »    Full Text »    PDF »
Crosstalk Between Vascular Endothelial Growth Factor, Notch, and Transforming Growth Factor-{beta} in Vascular Morphogenesis.
M. T. Holderfield and C. C.W. Hughes (2008)
Circ. Res. 102, 637-652
   Abstract »    Full Text »    PDF »
Notch and Integrin Affinity: A Sticky Situation.
A. Karsan (2008)
Science Signaling 1, pe2
   Abstract »    Full Text »    PDF »
Differential Control of Wnt Target Genes Involves Epigenetic Mechanisms and Selective Promoter Occupancy by T-Cell Factors.
S. Wohrle, B. Wallmen, and A. Hecht (2007)
Mol. Cell. Biol. 27, 8164-8177
   Abstract »    Full Text »    PDF »
Investigating the Genetic Circuitry of Mastermind in Drosophila, a Notch Signal Effector.
M. W. Kankel, G. D. Hurlbut, G. Upadhyay, V. Yajnik, B. Yedvobnick, and S. Artavanis-Tsakonas (2007)
Genetics 177, 2493-2505
   Abstract »    Full Text »    PDF »
Regulation of vascular morphogenesis by Notch signaling.
C. Roca and R. H. Adams (2007)
Genes & Dev. 21, 2511-2524
   Abstract »    Full Text »    PDF »
Notch signaling in vascular development and physiology.
T. Gridley (2007)
Development 134, 2709-2718
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882