Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 2 February 2010
Vol. 3, Issue 107, p. ra8
[DOI: 10.1126/scisignal.2000568]


Noncoding RNA Gas5 Is a Growth Arrest– and Starvation-Associated Repressor of the Glucocorticoid Receptor

Tomoshige Kino1*, Darrell E. Hurt2, Takamasa Ichijo1, Nancy Nader1, and George P. Chrousos3

1 Unit on Molecular Hormone Action, Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10, Clinical Research Center, Rm. 1-3140, 10 Center Drive MSC 1109, Bethesda, MD 20892–1109, USA.
2 Bioinformatics and Scientific IT Program, Office of Technology Information Systems, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892–1109, USA.
3 First Department of Pediatrics, Athens University Medical School, Athens 11527, Greece.

Abstract: The availability of nutrients influences cellular growth and survival by affecting gene transcription. Glucocorticoids also influence gene transcription and have diverse activities on cell growth, energy expenditure, and survival. We found that the growth arrest–specific 5 (Gas5) noncoding RNA, which is abundant in cells whose growth has been arrested because of lack of nutrients or growth factors, sensitized cells to apoptosis by suppressing glucocorticoid-mediated induction of several responsive genes, including the one encoding cellular inhibitor of apoptosis 2. Gas5 bound to the DNA-binding domain of the glucocorticoid receptor (GR) by acting as a decoy glucocorticoid response element (GRE), thus competing with DNA GREs for binding to the GR. We conclude that Gas5 is a "riborepressor" of the GR, influencing cell survival and metabolic activities during starvation by modulating the transcriptional activity of the GR.

* To whom correspondence should be addressed. E-mail: kinot{at}

Citation: T. Kino, D. E. Hurt, T. Ichijo, N. Nader, G. P. Chrousos, Noncoding RNA Gas5 Is a Growth Arrest– and Starvation-Associated Repressor of the Glucocorticoid Receptor. Sci. Signal. 3, ra8 (2010).

Read the Full Text

Elements and machinery of non-coding RNAs: toward their taxonomy.
T. Hirose, Y. Mishima, and Y. Tomari (2014)
   Abstract »    Full Text »    PDF »
Long noncoding RNAs in spermatogenesis: insights from recent high-throughput transcriptome studies.
A. C.-S. Luk, W.-Y. Chan, O. M. Rennert, and T.-L. Lee (2014)
Reproduction 147, R131-R141
   Abstract »    Full Text »    PDF »
Noncoding RNAs and LRRFIP1 Regulate TNF Expression.
L. Shi, L. Song, M. Fitzgerald, K. Maurer, A. Bagashev, and K. E. Sullivan (2014)
J. Immunol. 192, 3057-3067
   Abstract »    Full Text »    PDF »
A Lytic Viral Long Noncoding RNA Modulates the Function of a Latent Protein.
M. Campbell, K. Y. Kim, P.-C. Chang, S. Huerta, B. Shevchenko, D.-H. Wang, C. Izumiya, H.-J. Kung, and Y. Izumiya (2014)
J. Virol. 88, 1843-1848
   Abstract »    Full Text »    PDF »
A Prader-Willi locus lncRNA cloud modulates diurnal genes and energy expenditure.
W. T. Powell, R. L. Coulson, F. K. Crary, S. S. Wong, R. A. Ach, P. Tsang, N. Alice Yamada, D. H. Yasui, and J. M. LaSalle (2013)
Hum. Mol. Genet. 22, 4318-4328
   Abstract »    Full Text »    PDF »
Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step.
K. Gumireddy, A. Li, J. Yan, T. Setoyama, G. J. Johannes, U. A. Orom, J. Tchou, Q. Liu, L. Zhang, D. W. Speicher, et al. (2013)
EMBO J. 32, 2672-2684
   Abstract »    Full Text »    PDF »
Long noncoding RNAs in biology and hematopoiesis.
V. R. Paralkar and M. J. Weiss (2013)
Blood 121, 4842-4846
   Abstract »    Full Text »    PDF »
Unliganded progesterone receptor-mediated targeting of an RNA-containing repressive complex silences a subset of hormone-inducible genes.
G. P. Vicent, A. S. Nacht, R. Zaurin, J. Font-Mateu, D. Soronellas, F. Le Dily, D. Reyes, and M. Beato (2013)
Genes & Dev. 27, 1179-1197
   Abstract »    Full Text »    PDF »
Non-coding RNAs in homeostasis, disease and stress responses: an evolutionary perspective.
P. P. Amaral, M. E. Dinger, and J. S. Mattick (2013)
Briefings in Functional Genomics 12, 254-278
   Abstract »    Full Text »    PDF »
Long Noncoding RNAs: Past, Present, and Future.
J. T. Y. Kung, D. Colognori, and J. T. Lee (2013)
Genetics 193, 651-669
   Abstract »    Full Text »    PDF »
A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics.
N. A. Rapicavoli, K. Qu, J. Zhang, M. Mikhail, R.-M. Laberge, and H. Y. Chang (2013)
eLife Sci 2, e00762
   Abstract »    Full Text »    PDF »
Regulation of mammalian cell differentiation by long non-coding RNAs.
W. Hu, J. R. Alvarez-Dominguez, and H. F. Lodish (2012)
EMBO Rep. 13, 971-983
   Abstract »    Full Text »    PDF »
Long Noncoding RNAs in Cardiac Development and Pathophysiology.
N. Schonrock, R. P. Harvey, and J. S. Mattick (2012)
Circ. Res. 111, 1349-1362
   Abstract »    Full Text »    PDF »
The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression.
T. Derrien, R. Johnson, G. Bussotti, A. Tanzer, S. Djebali, H. Tilgner, G. Guernec, D. Martin, A. Merkel, D. G. Knowles, et al. (2012)
Genome Res. 22, 1775-1789
   Abstract »    Full Text »    PDF »
Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs.
V. A. Moran, R. J. Perera, and A. M. Khalil (2012)
Nucleic Acids Res. 40, 6391-6400
   Abstract »    Full Text »    PDF »
miRcode: a map of putative microRNA target sites in the long non-coding transcriptome.
A. Jeggari, D. S. Marks, and E. Larsson (2012)
Bioinformatics 28, 2062-2063
   Abstract »    Full Text »    PDF »
Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals.
H. Tani, R. Mizutani, K. A. Salam, K. Tano, K. Ijiri, A. Wakamatsu, T. Isogai, Y. Suzuki, and N. Akimitsu (2012)
Genome Res. 22, 947-956
   Abstract »    Full Text »    PDF »
The Emergence of lncRNAs in Cancer Biology.
J. R. Prensner and A. M. Chinnaiyan (2011)
Cancer Discovery 1, 391-407
   Abstract »    Full Text »    PDF »
SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer.
M. E. Askarian-Amiri, J. Crawford, J. D. French, C. E. Smart, M. A. Smith, M. B. Clark, K. Ru, T. R. Mercer, E. R. Thompson, S. R. Lakhani, et al. (2011)
RNA 17, 878-891
   Abstract »    Full Text »    PDF »
lncRNAdb: a reference database for long noncoding RNAs.
P. P. Amaral, M. B. Clark, D. K. Gascoigne, M. E. Dinger, and J. S. Mattick (2011)
Nucleic Acids Res. 39, D146-D151
   Abstract »    Full Text »    PDF »
Large non-coding RNAs: missing links in cancer?.
M. Huarte and J. L. Rinn (2010)
Hum. Mol. Genet. 19, R152-R161
   Abstract »    Full Text »    PDF »
Inhibition of Human T-Cell Proliferation by Mammalian Target of Rapamycin (mTOR) Antagonists Requires Noncoding RNA Growth-Arrest-Specific Transcript 5 (GAS5).
M. Mourtada-Maarabouni, A. M. Hasan, F. Farzaneh, and G. T. Williams (2010)
Mol. Pharmacol. 78, 19-28
   Abstract »    Full Text »    PDF »
Glucocorticoid Receptor DNA Binding Decoy Is a Gas.
M. J. Garabedian and S. K. Logan (2010)
Science Signaling 3, pe5
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 2 February 2010.
T. Kino and A. M. VanHook (2010)
Science Signaling 3, pc3
   Abstract »    Full Text »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882