Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 16 February 2010
Vol. 3, Issue 109, p. cm3
[DOI: 10.1126/scisignal.3109cm3]

CONNECTIONS MAP OVERVIEWS

Jasmonate Biochemical Pathway

Aurélie Gfeller1, Lucie Dubugnon2, Robin Liechti3, and Edward E. Farmer1*

1 Current contributing authorities, Gene Expression Laboratory, Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland.
2 Former contributing authority, Institut de Chimie Clinique, CH-1002 Lausanne, Switzerland.
3 Former contributing authority, Swiss Institute of Bioinformatics, Vital-IT Group, Génopode, CH-1015 Lausanne, Switzerland.

Abstract: Plants possess a family of potent fatty acid–derived wound-response and developmental regulators: the jasmonates. These compounds are derived from the tri-unsaturated fatty acids {alpha}-linolenic acid (18:3) and, in plants such as Arabidopsis thaliana and tomato, 7(Z)-, 10(Z)-, and 13(Z)-hexadecatrienoic acid (16:3). The lipoxygenase-catalyzed addition of molecular oxygen to {alpha}-linolenic acid initiates jasmonate synthesis by providing a 13-hydroperoxide substrate for formation of an unstable allene oxide by allene oxide synthase (AOS). This allene oxide then undergoes enzyme-guided cyclization to produce 12-oxophytodienoic acid (OPDA). These first steps take place in plastids, but further OPDA metabolism occurs in peroxisomes. OPDA has several fates, including esterification into plastid lipids and transformation into the 12-carbon prohormone jasmonic acid (JA). JA is itself a substrate for further diverse modifications, including the production of jasmonoyl-isoleucine (JA-Ile), which is a major biologically active jasmonate among a growing number of jasmonate derivatives. Each new jasmonate family member that is discovered provides another key to understanding the fine control of gene expression in immune responses; in the initiation and maintenance of long-distance signal transfer in response to wounding; in the regulation of fertility; and in the turnover, inactivation, and sequestration of jasmonates, among other processes.

* Corresponding author. E-mail, edward.farmer{at}unil.ch

Citation: A. Gfeller, L. Dubugnon, R. Liechti, E. E. Farmer, Jasmonate Biochemical Pathway. Sci. Signal. 3, cm3 (2010).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Discovery of a linoleate 9S-dioxygenase and an allene oxide synthase in a fusion protein of Fusarium oxysporum.
I. Hoffmann and E. H. Oliw (2013)
J. Lipid Res. 54, 3471-3480
   Abstract »    Full Text »    PDF »
Basic Helix-Loop-Helix Transcription Factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 Are Negative Regulators of Jasmonate Responses in Arabidopsis.
Y. Sasaki-Sekimoto, Y. Jikumaru, T. Obayashi, H. Saito, S. Masuda, Y. Kamiya, H. Ohta, and K. Shirasu (2013)
Plant Physiology 163, 291-304
   Abstract »    Full Text »    PDF »
Loss of Plastoglobule Kinases ABC1K1 and ABC1K3 Causes Conditional Degreening, Modified Prenyl-Lipids, and Recruitment of the Jasmonic Acid Pathway.
P. K. Lundquist, A. Poliakov, L. Giacomelli, G. Friso, M. Appel, R. P. McQuinn, S. B. Krasnoff, E. Rowland, L. Ponnala, Q. Sun, et al. (2013)
PLANT CELL 25, 1818-1839
   Abstract »    Full Text »    PDF »
The {alpha}/{beta} Hydrolase CGI-58 and Peroxisomal Transport Protein PXA1 Coregulate Lipid Homeostasis and Signaling in Arabidopsis.
S. Park, S. K. Gidda, C. N. James, P. J. Horn, N. Khuu, D. C. Seay, J. Keereetaweep, K. D. Chapman, R. T. Mullen, and J. M. Dyer (2013)
PLANT CELL 25, 1726-1739
   Abstract »    Full Text »    PDF »
Jasmonate Controls Leaf Growth by Repressing Cell Proliferation and the Onset of Endoreduplication while Maintaining a Potential Stand-By Mode.
S. Noir, M. Bomer, N. Takahashi, T. Ishida, T.-L. Tsui, V. Balbi, H. Shanahan, K. Sugimoto, and A. Devoto (2013)
Plant Physiology 161, 1930-1951
   Abstract »    Full Text »    PDF »
Salicylic Acid Suppresses Jasmonic Acid Signaling Downstream of SCFCOI1-JAZ by Targeting GCC Promoter Motifs via Transcription Factor ORA59.
D. Van der Does, A. Leon-Reyes, A. Koornneef, M. C. Van Verk, N. Rodenburg, L. Pauwels, A. Goossens, A. P. Korbes, J. Memelink, T. Ritsema, et al. (2013)
PLANT CELL 25, 744-761
   Abstract »    Full Text »    PDF »
Herbivore induction of jasmonic acid and chemical defences reduce photosynthesis in Nicotiana attenuata.
P. D. Nabity, J. A. Zavala, and E. H. DeLucia (2013)
J. Exp. Bot. 64, 685-694
   Abstract »    Full Text »    PDF »
The Impact of Global Change Factors on Redox Signaling Underpinning Stress Tolerance.
S. Munne-Bosch, G. Queval, and C. H. Foyer (2013)
Plant Physiology 161, 5-19
   Full Text »    PDF »
Catalytic Convergence of Manganese and Iron Lipoxygenases by Replacement of a Single Amino Acid.
A. Wennman, F. Jerneren, M. Hamberg, and E. H. Oliw (2012)
J. Biol. Chem. 287, 31757-31765
   Abstract »    Full Text »    PDF »
Transcriptional and Metabolic Analysis of Senescence Induced by Preventing Pollination in Maize.
R. S. Sekhon, K. L. Childs, N. Santoro, C. E. Foster, C. R. Buell, N. de Leon, and S. M. Kaeppler (2012)
Plant Physiology 159, 1730-1744
   Abstract »    Full Text »    PDF »
Control of final organ size by Mediator complex subunit 25 in Arabidopsis thaliana.
R. Xu and Y. Li (2011)
Development 138, 4545-4554
   Abstract »    Full Text »    PDF »
Ectopic Expression of AtJMT in Nicotiana attenuata: Creating a Metabolic Sink Has Tissue-Specific Consequences for the Jasmonate Metabolic Network and Silences Downstream Gene Expression.
M. Stitz, K. Gase, I. T. Baldwin, and E. Gaquerel (2011)
Plant Physiology 157, 341-354
   Abstract »    Full Text »    PDF »
Cell Wall Damage-Induced Lignin Biosynthesis Is Regulated by a Reactive Oxygen Species- and Jasmonic Acid-Dependent Process in Arabidopsis.
L. Denness, J. F. McKenna, C. Segonzac, A. Wormit, P. Madhou, M. Bennett, J. Mansfield, C. Zipfel, and T. Hamann (2011)
Plant Physiology 156, 1364-1374
   Abstract »    Full Text »    PDF »
White Lupin Cluster Root Acclimation to Phosphorus Deficiency and Root Hair Development Involve Unique Glycerophosphodiester Phosphodiesterases.
L. Cheng, B. Bucciarelli, J. Liu, K. Zinn, S. Miller, J. Patton-Vogt, D. Allan, J. Shen, and C. P. Vance (2011)
Plant Physiology 156, 1131-1148
   Abstract »    Full Text »    PDF »
Lipoxygenase-mediated Oxidation of Polyunsaturated N-Acylethanolamines in Arabidopsis.
A. Kilaru, C. Herrfurth, J. Keereetaweep, E. Hornung, B. J. Venables, I. Feussner, and K. D. Chapman (2011)
J. Biol. Chem. 286, 15205-15214
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882