Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 16 February 2010
Vol. 3, Issue 109, p. ra12
[DOI: 10.1126/scisignal.2000482]

RESEARCH ARTICLES

Deciphering Protein Kinase Specificity Through Large-Scale Analysis of Yeast Phosphorylation Site Motifs

Janine Mok1*, Philip M. Kim2{dagger}, Hugo Y. K. Lam3, Stacy Piccirillo1, Xiuqiong Zhou1, Grace R. Jeschke4, Douglas L. Sheridan4{ddagger}, Sirlester A. Parker4, Ved Desai4, Miri Jwa5, Elisabetta Cameroni6§, Hengyao Niu7, Matthew Good8, Attila Remenyi8||, Jia-Lin Nianhan Ma9, Yi-Jun Sheu10, Holly E. Sassi11, Richelle Sopko11, Clarence S. M. Chan5, Claudio De Virgilio6, Nancy M. Hollingsworth7, Wendell A. Lim12, David F. Stern9, Bruce Stillman10, Brenda J. Andrews11, Mark B. Gerstein2,3, Michael Snyder1,2#, and Benjamin E. Turk4#

1 Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA.
2 Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
3 Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA.
4 Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
5 Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA.
6 Department of Medicine, Division of Biochemistry, University of Fribourg, CH-1700 Fribourg, Switzerland.
7 Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.
8 Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA.
9 Department of Pathology, School of Medicine, Yale University, New Haven, CT 06520, USA.
10 Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
11 Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3E1.
12 Eötvös Loránd University, Department of Biochemistry and Howard Hughes Medical Institute, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.

* Present address: Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, CA 94304, USA.

{dagger} Present address: Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3E1.

{ddagger} Present address: Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, CT 06410, USA.

§ Present address: Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland.

|| Present address: Eötvös Loránd University, Department of Biochemistry, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.

Present address: Department of Genetics, Stanford University, Palo Alto, CA 94305, USA.

Abstract: Phosphorylation is a universal mechanism for regulating cell behavior in eukaryotes. Although protein kinases target short linear sequence motifs on their substrates, the rules for kinase substrate recognition are not completely understood. We used a rapid peptide screening approach to determine consensus phosphorylation site motifs targeted by 61 of the 122 kinases in Saccharomyces cerevisiae. By correlating these motifs with kinase primary sequence, we uncovered previously unappreciated rules for determining specificity within the kinase family, including a residue determining P–3 arginine specificity among members of the CMGC [CDK (cyclin-dependent kinase), MAPK (mitogen-activated protein kinase), GSK (glycogen synthase kinase), and CDK-like] group of kinases. Furthermore, computational scanning of the yeast proteome enabled the prediction of thousands of new kinase-substrate relationships. We experimentally verified several candidate substrates of the Prk1 family of kinases in vitro and in vivo and identified a protein substrate of the kinase Vhs1. Together, these results elucidate how kinase catalytic domains recognize their phosphorylation targets and suggest general avenues for the identification of previously unknown kinase substrates across eukaryotes.

# To whom correspondence should be addressed. E-mail: ben.turk{at}yale.edu (B.E.T.); mpsnyder{at}stanford.edu (M.S.).

Citation: J. Mok, P. M. Kim, H. Y. K. Lam, S. Piccirillo, X. Zhou, G. R. Jeschke, D. L. Sheridan, S. A. Parker, V. Desai, M. Jwa, E. Cameroni, H. Niu, M. Good, A. Remenyi, J.-L. N. Ma, Y.-J. Sheu, H. E. Sassi, R. Sopko, C. S. M. Chan, C. De Virgilio, N. M. Hollingsworth, W. A. Lim, D. F. Stern, B. Stillman, B. J. Andrews, M. B. Gerstein, M. Snyder, B. E. Turk, Deciphering Protein Kinase Specificity Through Large-Scale Analysis of Yeast Phosphorylation Site Motifs. Sci. Signal. 3, ra12 (2010).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Phosphorylation network rewiring by gene duplication.
L. Freschi, M. Courcelles, P. Thibault, S. W. Michnick, and C. R. Landry (2014)
Mol Syst Biol 7, 504
   Abstract »    Full Text »    PDF »
Evolution and functional cross-talk of protein post-translational modifications.
P. Beltrao, P. Bork, N. J. Krogan, and V. van Noort (2014)
Mol Syst Biol 9, 714
   Abstract »    Full Text »    PDF »
Construction of human activity-based phosphorylation networks.
R. H. Newman, J. Hu, H.-S. Rho, Z. Xie, C. Woodard, J. Neiswinger, C. Cooper, M. Shirley, H. M. Clark, S. Hu, et al. (2014)
Mol Syst Biol 9, 655
   Abstract »    Full Text »    PDF »
Deciphering kinase-substrate relationships by analysis of domain-specific phosphorylation network.
N. P. Damle and D. Mohanty (2014)
Bioinformatics
   Abstract »    Full Text »    PDF »
PhosphoNetworks: a database for human phosphorylation networks.
J. Hu, H.-S. Rho, R. H. Newman, J. Zhang, H. Zhu, and J. Qian (2014)
Bioinformatics 30, 141-142
   Abstract »    Full Text »    PDF »
mTORC1 Phosphorylation Sites Encode Their Sensitivity to Starvation and Rapamycin.
S. A. Kang, M. E. Pacold, C. L. Cervantes, D. Lim, H. J. Lou, K. Ottina, N. S. Gray, B. E. Turk, M. B. Yaffe, and D. M. Sabatini (2013)
Science 341, 1236566
   Abstract »    Full Text »    PDF »
Polo-like kinase phosphorylation of bilobe-resident TbCentrin2 facilitates flagellar inheritance in Trypanosoma brucei.
C. L. de Graffenried, D. Anrather, F. Von Raussendorf, and G. Warren (2013)
Mol. Biol. Cell 24, 1947-1963
   Abstract »    Full Text »    PDF »
Phosphoproteomic Analysis of Protein Kinase C Signaling in Saccharomyces cerevisiae Reveals Slt2 Mitogen-activated Protein Kinase (MAPK)-dependent Phosphorylation of Eisosome Core Components.
V. Mascaraque, M. L. Hernaez, M. Jimenez-Sanchez, R. Hansen, C. Gil, H. Martin, V. J. Cid, and M. Molina (2013)
Mol. Cell. Proteomics 12, 557-574
   Abstract »    Full Text »    PDF »
Reciprocal Phosphorylation of Yeast Glycerol-3-Phosphate Dehydrogenases in Adaptation to Distinct Types of Stress.
Y. J. Lee, G. R. Jeschke, F. M. Roelants, J. Thorner, and B. E. Turk (2012)
Mol. Cell. Biol. 32, 4705-4717
   Abstract »    Full Text »    PDF »
Cyclic GMP-dependent Stimulation of Serotonin Transport Does Not Involve Direct Transporter Phosphorylation by cGMP-dependent Protein Kinase.
A. Wong, Y.-W. Zhang, G. R. Jeschke, B. E. Turk, and G. Rudnick (2012)
J. Biol. Chem. 287, 36051-36058
   Abstract »    Full Text »    PDF »
Role of Scd5, a protein phosphatase-1 targeting protein, in phosphoregulation of Sla1 during endocytosis.
R. J. Chi, O. T. Torres, V. A. Segarra, T. Lansley, J. S. Chang, T. M. Newpher, and S. K. Lemmon (2012)
J. Cell Sci. 125, 4728-4739
   Abstract »    Full Text »    PDF »
Nutritional Control of Growth and Development in Yeast.
J. R. Broach (2012)
Genetics 192, 73-105
   Abstract »    Full Text »    PDF »
Recovery of RNA Polymerase III Transcription from the Glycerol-repressed State: REVISITING THE ROLE OF PROTEIN KINASE CK2 IN MAF1 PHOSPHOREGULATION.
R. D. Moir, J. Lee, and I. M. Willis (2012)
J. Biol. Chem. 287, 30833-30841
   Abstract »    Full Text »    PDF »
Evaluation and Properties of the Budding Yeast Phosphoproteome.
G. D. Amoutzias, Y. He, K. S. Lilley, Y. Van de Peer, and S. G. Oliver (2012)
Mol. Cell. Proteomics 11, M111.009555
   Abstract »    Full Text »    PDF »
A mechanism for the coordination of proliferation and differentiation by spatial regulation of Fus2p in budding yeast.
J. Kim and M. D. Rose (2012)
Genes & Dev. 26, 1110-1121
   Abstract »    Full Text »    PDF »
Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs.
S. Sharifpoor, D. van Dyk, M. Costanzo, A. Baryshnikova, H. Friesen, A. C. Douglas, J.-Y. Youn, B. VanderSluis, C. L. Myers, B. Papp, et al. (2012)
Genome Res. 22, 791-801
   Abstract »    Full Text »    PDF »
Proteome-Wide Discovery of Evolutionary Conserved Sequences in Disordered Regions.
A. N. Nguyen Ba, B. J. Yeh, D. van Dyk, A. R. Davidson, B. J. Andrews, E. L. Weiss, and A. M. Moses (2012)
Science Signaling 5, rs1
   Abstract »    Full Text »    PDF »
Phosphosite Mapping of P-type Plasma Membrane H+-ATPase in Homologous and Heterologous Environments.
E. L. Rudashevskaya, J. Ye, O. N. Jensen, A. T. Fuglsang, and M. G. Palmgren (2012)
J. Biol. Chem. 287, 4904-4913
   Abstract »    Full Text »    PDF »
Cdc7-Dbf4 Is a Gene-Specific Regulator of Meiotic Transcription in Yeast.
H.-C. Lo, R. C. Kunz, X. Chen, A. Marullo, S. P. Gygi, and N. M. Hollingsworth (2012)
Mol. Cell. Biol. 32, 541-557
   Abstract »    Full Text »    PDF »
Lysine methylation: beyond histones.
X. Zhang, H. Wen, and X. Shi (2012)
Acta Biochim Biophys Sin 44, 14-27
   Abstract »    Full Text »    PDF »
Phosphorylation of Mcm2 modulates Mcm2-7 activity and affects the cell's response to DNA damage.
B. E. Stead, C. J. Brandl, and M. J. Davey (2011)
Nucleic Acids Res. 39, 6998-7008
   Abstract »    Full Text »    PDF »
Transcriptional regulation via TF-modifying enzymes: an integrative model-based analysis.
L. J. Everett, S. T. Jensen, and S. Hannenhalli (2011)
Nucleic Acids Res. 39, e78
   Abstract »    Full Text »    PDF »
The mTOR-Regulated Phosphoproteome Reveals a Mechanism of mTORC1-Mediated Inhibition of Growth Factor Signaling.
P. P. Hsu, S. A. Kang, J. Rameseder, Y. Zhang, K. A. Ottina, D. Lim, T. R. Peterson, Y. Choi, N. S. Gray, M. B. Yaffe, et al. (2011)
Science 332, 1317-1322
   Abstract »    Full Text »    PDF »
Structural Bases of PAS Domain-regulated Kinase (PASK) Activation in the Absence of Activation Loop Phosphorylation.
C. K. Kikani, S. A. Antonysamy, J. B. Bonanno, R. Romero, F. F. Zhang, M. Russell, T. Gheyi, M. Iizuka, S. Emtage, J. M. Sauder, et al. (2010)
J. Biol. Chem. 285, 41034-41043
   Abstract »    Full Text »    PDF »
Phosphoproteomic Analysis Reveals Interconnected System-Wide Responses to Perturbations of Kinases and Phosphatases in Yeast.
B. Bodenmiller, S. Wanka, C. Kraft, J. Urban, D. Campbell, P. G. Pedrioli, B. Gerrits, P. Picotti, H. Lam, O. Vitek, et al. (2010)
Science Signaling 3, rs4
   Abstract »    Full Text »    PDF »
Characterization of Substrates That Have a Differential Effect on Saccharomyces cerevisiae Protein Kinase A Holoenzyme Activation.
F. Galello, P. Portela, S. Moreno, and S. Rossi (2010)
J. Biol. Chem. 285, 29770-29779
   Abstract »    Full Text »    PDF »
Signaling Through Cooperation.
E. D. Levy, C. R. Landry, and S. W. Michnick (2010)
Science 328, 983-984
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882