Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 29 June 2010
Vol. 3, Issue 128, p. ra50
[DOI: 10.1126/scisignal.2000724]


Origins and Diversification of a Complex Signal Transduction System in Prokaryotes

Kristin Wuichet1,2 and Igor B. Zhulin1,2*

1 BioEnergy Science Center and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
2 Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.

Abstract: The molecular machinery that controls chemotaxis in bacteria is substantially more complex than any other signal transduction system in prokaryotes, and its origins and variability among living species are unknown. We found that this multiprotein "chemotaxis system" is present in most prokaryotic species and evolved from simpler two-component regulatory systems that control prokaryotic transcription. We discovered, through genomic analysis, signaling systems intermediate between two-component systems and chemotaxis systems. Evolutionary genomics established central and auxiliary components of the chemotaxis system. While tracing its evolutionary history, we also developed a classification scheme that revealed more than a dozen distinct classes of chemotaxis systems, enabling future predictive modeling of chemotactic behavior in unstudied species.

* To whom correspondence should be addressed. E-mail: ijouline{at}

Citation: K. Wuichet, I. B. Zhulin, Origins and Diversification of a Complex Signal Transduction System in Prokaryotes. Sci. Signal. 3, ra50 (2010).

Read the Full Text

Specificity of the CheR2 Methyltransferase in Pseudomonas aeruginosa Is Directed by a C-Terminal Pentapeptide in the McpB Chemoreceptor.
C. Garcia-Fontana, A. Corral Lugo, and T. Krell (2014)
Science Signaling 7, ra34
   Abstract »    Full Text »    PDF »
Structure of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling.
A. Briegel, M. S. Ladinsky, C. Oikonomou, C. W. Jones, M. J. Harris, D. J. Fowler, Y.-W. Chang, L. K. Thompson, J. P. Armitage, and G. J. Jensen (2014)
eLife Sci 3, e02151
   Abstract »    Full Text »    PDF »
Chemoreceptor Gene Loss and Acquisition via Horizontal Gene Transfer in Escherichia coli.
K. Borziak, A. D. Fleetwood, and I. B. Zhulin (2013)
J. Bacteriol. 195, 3596-3602
   Abstract »    Full Text »    PDF »
C. Garcia-Fontana, J. A. Reyes-Darias, F. Munoz-Martinez, C. Alfonso, B. Morel, J. L. Ramos, and T. Krell (2013)
J. Biol. Chem. 288, 18987-18999
   Abstract »    Full Text »    PDF »
Structure and Activity of the Flagellar Rotor Protein FliY: A MEMBER OF THE CheC PHOSPHATASE FAMILY.
R. Sircar, A. R. Greenswag, A. M. Bilwes, G. Gonzalez-Bonet, and B. R. Crane (2013)
J. Biol. Chem. 288, 13493-13502
   Abstract »    Full Text »    PDF »
A Single-Cell Genome for Thiovulum sp..
I. P. G. Marshall, P. C. Blainey, A. M. Spormann, and S. R. Quake (2012)
Appl. Envir. Microbiol. 78, 8555-8563
   Abstract »    Full Text »    PDF »
A chemoreceptor from Pseudomonas putida forms active signalling complexes in Escherichia coli.
M. K. Herrera Seitz, D. Soto, and C. A. Studdert (2012)
Microbiology 158, 2283-2292
   Abstract »    Full Text »    PDF »
Intra- and Interprotein Phosphorylation between Two-hybrid Histidine Kinases Controls Myxococcus xanthus Developmental Progression.
A. Schramm, B. Lee, and P. I. Higgs (2012)
J. Biol. Chem. 287, 25060-25072
   Abstract »    Full Text »    PDF »
In Rhodobacter sphaeroides, Chemotactic Operon 1 Regulates Rotation of the Flagellar System 2.
A. Martinez-del Campo, T. Ballado, L. Camarena, and G. Dreyfus (2011)
J. Bacteriol. 193, 6781-6786
   Abstract »    Full Text »    PDF »
Mutational Analysis of the Control Cable That Mediates Transmembrane Signaling in the Escherichia coli Serine Chemoreceptor.
S. Kitanovic, P. Ames, and J. S. Parkinson (2011)
J. Bacteriol. 193, 5062-5072
   Abstract »    Full Text »    PDF »
CrdS and CrdA Comprise a Two-Component System That Is Cooperatively Regulated by the Che3 Chemosensory System in Myxococcus xanthus.
J. W. Willett and J. R. Kirby (2011)
mBio 2, e00110-11
   Abstract »    Full Text »    PDF »
ChePep Controls Helicobacter pylori Infection of the Gastric Glands and Chemotaxis in the Epsilonproteobacteria.
M. R. Howitt, J. Y. Lee, P. Lertsethtakarn, R. Vogelmann, L.-M. Joubert, K. M. Ottemann, and M. R. Amieva (2011)
mBio 2, e00098-11
   Abstract »    Full Text »    PDF »
CheY3 of Borrelia burgdorferi Is the Key Response Regulator Essential for Chemotaxis and Forms a Long-Lived Phosphorylated Intermediate.
M. A. Motaleb, S. Z. Sultan, M. R. Miller, C. Li, and N. W. Charon (2011)
J. Bacteriol. 193, 3332-3341
   Abstract »    Full Text »    PDF »
The Promise of Evolutionary Systems Biology: Lessons from Bacterial Chemotaxis.
O. S. Soyer (2010)
Science Signaling 3, pe23
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882