Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 14 September 2010
Vol. 3, Issue 139, p. re6
[DOI: 10.1126/scisignal.3139re6]


ABL Tyrosine Kinases: Evolution of Function, Regulation, and Specificity

John Colicelli*

Department of Biological Chemistry, Molecular Biology Institute and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.

Abstract: ABL-family proteins comprise one of the best conserved branches of the tyrosine kinases. Each ABL protein contains an SH3-SH2-TK (Src homology 3–Src homology 2–tyrosine kinase) domain cassette, which confers autoregulated kinase activity and is common among nonreceptor tyrosine kinases. This cassette is coupled to an actin-binding and -bundling domain, which makes ABL proteins capable of connecting phosphoregulation with actin-filament reorganization. Two vertebrate paralogs, ABL1 and ABL2, have evolved to perform specialized functions. ABL1 includes nuclear localization signals and a DNA binding domain through which it mediates DNA damage-repair functions, whereas ABL2 has additional binding capacity for actin and for microtubules to enhance its cytoskeletal remodeling functions. Several types of posttranslational modifications control ABL catalytic activity, subcellular localization, and stability, with consequences for both cytoplasmic and nuclear ABL functions. Binding partners provide additional regulation of ABL catalytic activity, substrate specificity, and downstream signaling. Information on ABL regulatory mechanisms is being mined to provide new therapeutic strategies against hematopoietic malignancies caused by BCR-ABL1 and related leukemogenic proteins.

* Corresponding author. Telephone, 310-825-1251; fax, 310-206-1929; e-mail, colicelli{at}

Citation: J. Colicelli, ABL Tyrosine Kinases: Evolution of Function, Regulation, and Specificity. Sci. Signal. 3, re6 (2010).

Read the Full Text

The Capable ABL: What Is Its Biological Function?.
J. Y. J. Wang (2014)
Mol. Cell. Biol. 34, 1188-1197
   Abstract »    Full Text »    PDF »
Protein kinase G increases antioxidant function in lung microvascular endothelial cells by inhibiting the c-Abl tyrosine kinase.
R. S. Stephens, L. E. Servinsky, O. Rentsendorj, T. M. Kolb, A. Pfeifer, and D. B. Pearse (2014)
Am J Physiol Cell Physiol 306, C559-C569
   Abstract »    Full Text »    PDF »
c-Abl phosphorylates {alpha}-synuclein and regulates its degradation: implication for {alpha}-synuclein clearance and contribution to the pathogenesis of Parkinson's disease.
A.-L. Mahul-Mellier, B. Fauvet, A. Gysbers, I. Dikiy, A. Oueslati, S. Georgeon, A. J. Lamontanara, A. Bisquertt, D. Eliezer, E. Masliah, et al. (2014)
Hum. Mol. Genet.
   Abstract »    Full Text »    PDF »
Two-state dynamics of the SH3-SH2 tandem of Abl kinase and the allosteric role of the N-cap.
C. Corbi-Verge, F. Marinelli, A. Zafra-Ruano, J. Ruiz-Sanz, I. Luque, and J. D. Faraldo-Gomez (2013)
PNAS 110, E3372-E3380
   Abstract »    Full Text »    PDF »
Systematic identification of Class I HDAC substrates.
T. Li, B. Song, Z. Wu, M. Lu, and W.-G. Zhu (2013)
Brief Bioinform
   Abstract »    Full Text »    PDF »
c-Abl-dependent Molecular Circuitry Involving Smad5 and Phosphatidylinositol 3-Kinase Regulates Bone Morphogenetic Protein-2-induced Osteogenesis.
N. Ghosh-Choudhury, C. C. Mandal, F. Das, S. Ganapathy, S. Ahuja, and G. Ghosh Choudhury (2013)
J. Biol. Chem. 288, 24503-24517
   Abstract »    Full Text »    PDF »
Non-receptor-tyrosine Kinases Integrate Fast Glucocorticoid Signaling in Hippocampal Neurons.
S. Yang, F. Roselli, A. V. Patchev, S. Yu, and O. F. X. Almeida (2013)
J. Biol. Chem. 288, 23725-23739
   Abstract »    Full Text »    PDF »
Abelson Interactor 1 (Abi1) and Its Interaction with Wiskott-Aldrich Syndrome Protein (Wasp) Are Critical for Proper Eye Formation in Xenopus Embryos.
A. Singh, E. F. Winterbottom, Y. J. Ji, Y.-S. Hwang, and I. O. Daar (2013)
J. Biol. Chem. 288, 14135-14146
   Abstract »    Full Text »    PDF »
Phosphotyrosine Signaling Proteins that Drive Oncogenesis Tend to be Highly Interconnected.
G. Koytiger, A. Kaushansky, A. Gordus, J. Rush, P. K. Sorger, and G. MacBeath (2013)
Mol. Cell. Proteomics 12, 1204-1213
   Abstract »    Full Text »    PDF »
Structure and Dynamic Regulation of Abl Kinases.
S. Panjarian, R. E. Iacob, S. Chen, J. R. Engen, and T. E. Smithgall (2013)
J. Biol. Chem. 288, 5443-5450
   Abstract »    Full Text »    PDF »
RIN1 orchestrates the activation of RAB5 GTPases and ABL tyrosine kinases to determine the fate of EGFR.
K. Balaji, C. Mooser, C. M. Janson, J. M. Bliss, H. Hojjat, and J. Colicelli (2012)
J. Cell Sci. 125, 5887-5896
   Abstract »    Full Text »    PDF »
H. Kalwa, J. L. Sartoretto, S. M. Sartoretto, and T. Michel (2012)
J. Biol. Chem. 287, 29147-29158
   Abstract »    Full Text »    PDF »
Abl Family Kinases Modulate T Cell-Mediated Inflammation and Chemokine-Induced Migration Through the Adaptor HEF1 and the GTPase Rap1.
J. J. Gu, C. P. Lavau, E. Pugacheva, E. J. Soderblom, M. A. Moseley, and A. M. Pendergast (2012)
Science Signaling 5, ra51
   Abstract »    Full Text »    PDF »
Caveolar domain organization and trafficking is regulated by Abl kinases and mDia1.
A. Echarri, O. Muriel, D. M. Pavon, H. Azegrouz, F. Escolar, M. C. Terron, F. Sanchez-Cabo, F. Martinez, M. C. Montoya, O. Llorca, et al. (2012)
J. Cell Sci. 125, 3097-3113
   Abstract »    Full Text »    PDF »
Activation of Abl Family Kinases in Solid Tumors.
S. S. Ganguly and R. Plattner (2012)
Genes & Cancer 3, 414-425
   Abstract »    Full Text »    PDF »
Proteome-wide Detection of Abl1 SH3-binding Peptides by Integrating Computational Prediction and Peptide Microarray.
Z. Xu, T. Hou, N. Li, Y. Xu, and W. Wang (2012)
Mol. Cell. Proteomics 11, O111.010389
   Abstract »    Full Text »    PDF »
Characterization of the Src/Abl Hybrid Kinase SmTK6 of Schistosoma mansoni.
S. Beckmann, S. Hahnel, K. Cailliau, M. Vanderstraete, E. Browaeys, C. Dissous, and C. G. Grevelding (2011)
J. Biol. Chem. 286, 42325-42336
   Abstract »    Full Text »    PDF »
The SH2 Domain-Containing Proteins in 21 Species Establish the Provenance and Scope of Phosphotyrosine Signaling in Eukaryotes.
B. A. Liu, E. Shah, K. Jablonowski, A. Stergachis, B. Engelmann, and P. D. Nash (2011)
Science Signaling 4, ra83
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882