Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 1 February 2011
Vol. 4, Issue 158, p. ra6
[DOI: 10.1126/scisignal.2001249]


Wnt Signaling Regulates Hepatic Metabolism

Hongjun Liu1*, Maria M. Fergusson1, J. Julie Wu1, Ilsa I. Rovira1, Jie Liu1, Oksana Gavrilova2, Teng Lu1,3, Jianjun Bao1, Donghe Han4, Michael N. Sack1, and Toren Finkel1{dagger}

1 Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
2 Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA.
3 Emory University School of Medicine, Atlanta, GA 30322, USA.
4 Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.

* Present address: Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.

Abstract: The contribution of the Wnt pathway has been extensively characterized in embryogenesis, differentiation, and stem cell biology but not in mammalian metabolism. Here, using in vivo gain- and loss-of-function models, we demonstrate an important role for Wnt signaling in hepatic metabolism. In particular, β-catenin, the downstream mediator of canonical Wnt signaling, altered serum glucose concentrations and regulated hepatic glucose production. β-Catenin also modulated hepatic insulin signaling. Furthermore, β-catenin interacted with the transcription factor FoxO1 in livers from mice under starved conditions. The interaction of FoxO1 with β-catenin regulated the transcriptional activation of the genes encoding glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), the two rate-limiting enzymes in hepatic gluconeogenesis. Moreover, starvation induced the hepatic expression of mRNAs encoding different Wnt isoforms. In addition, nutrient deprivation appeared to favor the association of β-catenin with FoxO family members, rather than with members of the T cell factor of transcriptional activators. Notably, in a model of diet-induced obesity, hepatic deletion of β-catenin improved overall metabolic homeostasis. These observations implicate Wnt signaling in the modulation of hepatic metabolism and raise the possibility that Wnt signaling may play a similar role in the metabolic regulation of other tissues.

{dagger} To whom correspondence should be addressed. E-mail: finkelt{at}

Citation: H. Liu, M. M. Fergusson, J. J. Wu, I. I. Rovira, J. Liu, O. Gavrilova, T. Lu, J. Bao, D. Han, M. N. Sack, T. Finkel, Wnt Signaling Regulates Hepatic Metabolism. Sci. Signal. 4, ra6 (2011).

Read the Full Text

Systemic Activin signaling independently regulates sugar homeostasis, cellular metabolism, and pH balance in Drosophila melanogaster.
A. C. Ghosh and M. B. O'Connor (2014)
PNAS 111, 5729-5734
   Abstract »    Full Text »    PDF »
GLP-1-derived nonapeptide GLP-1(28-36)amide represses hepatic gluconeogenic gene expression and improves pyruvate tolerance in high-fat diet-fed mice.
W. Ip, W. Shao, Y.-t. A. Chiang, and T. Jin (2013)
Am J Physiol Endocrinol Metab 305, E1348-E1358
   Abstract »    Full Text »    PDF »
Basic Biology of Skeletal Aging: Role of Stress Response Pathways.
M. Almeida and C. A. O'Brien (2013)
J Gerontol A Biol Sci Med Sci 68, 1197-1208
   Abstract »    Full Text »    PDF »
The Wnt Signaling Pathway Effector TCF7L2 Controls Gut and Brain Proglucagon Gene Expression and Glucose Homeostasis.
W. Shao, D. Wang, Y.-T. Chiang, W. Ip, L. Zhu, F. Xu, J. Columbus, D. D. Belsham, D. M. Irwin, H. Zhang, et al. (2013)
Diabetes 62, 789-800
   Abstract »    Full Text »    PDF »
WISP2 regulates preadipocyte commitment and PPAR{gamma} activation by BMP4.
A. Hammarstedt, S. Hedjazifar, L. Jenndahl, S. Gogg, J. Grunberg, B. Gustafson, E. Klimcakova, V. Stich, D. Langin, M. Laakso, et al. (2013)
PNAS 110, 2563-2568
   Abstract »    Full Text »    PDF »
Genome-wide analysis of FoxO1 binding in hepatic chromatin: Potential involvement of FoxO1 in linking retinoid signaling to hepatic gluconeogenesis.
D.-J. Shin, P. Joshi, S.-H. Hong, K. Mosure, D.-G. Shin, and T. F. Osborne (2012)
Nucleic Acids Res. 40, 11499-11509
   Abstract »    Full Text »    PDF »
The Wnt signaling pathway effector TCF7L2 is upregulated by insulin and represses hepatic gluconeogenesis.
W. Ip, W. Shao, Y.-t. A. Chiang, and T. Jin (2012)
Am J Physiol Endocrinol Metab 303, E1166-E1176
   Abstract »    Full Text »    PDF »
Wnt/Snail Signaling Regulates Cytochrome c Oxidase and Glucose Metabolism.
S. Y. Lee, H. M. Jeon, M. K. Ju, C. H. Kim, G. Yoon, S. I. Han, H. G. Park, and H. S. Kang (2012)
Cancer Res. 72, 3607-3617
   Abstract »    Full Text »    PDF »
The many faces and functions of {beta}-catenin.
T. Valenta, G. Hausmann, and K. Basler (2012)
EMBO J. 31, 2714-2736
   Abstract »    Full Text »    PDF »
Low Density Lipoprotein (LDL) Receptor-related Protein 6 (LRP6) Regulates Body Fat and Glucose Homeostasis by Modulating Nutrient Sensing Pathways and Mitochondrial Energy Expenditure.
W. Liu, R. Singh, C. S. Choi, H.-Y. Lee, A. R. Keramati, V. T. Samuel, R. P. Lifton, G. I. Shulman, and A. Mani (2012)
J. Biol. Chem. 287, 7213-7223
   Abstract »    Full Text »    PDF »
Liver Patt1 deficiency protects male mice from age-associated but not high-fat diet-induced hepatic steatosis.
Y. Liu, D. Zhou, F. Zhang, Y. Tu, Y. Xia, H. Wang, B. Zhou, Y. Zhang, J. Wu, X. Gao, et al. (2012)
J. Lipid Res. 53, 358-367
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882