Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 19 July 2011
Vol. 4, Issue 182, p. ra46
[DOI: 10.1126/scisignal.2001465]


The Deacetylase SIRT1 Promotes Membrane Localization and Activation of Akt and PDK1 During Tumorigenesis and Cardiac Hypertrophy

Nagalingam R. Sundaresan1, Vinodkumar B. Pillai1, Don Wolfgeher2, Sadhana Samant1, Prabhakaran Vasudevan3, Vishwas Parekh3, Hariharasundaram Raghuraman4, John M. Cunningham3, Madhu Gupta5, and Mahesh P. Gupta1*

1 Department of Surgery, Committee on Cellular and Molecular Physiology, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
2 Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.
3 Department of Pediatrics, Committee on Developmental Biology, University of Chicago, Chicago, IL 60637, USA.
4 Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
5 Department of Physiology and Biophysics, University of Illinois, Chicago, IL 60607, USA.

Abstract: Signaling through the kinase Akt regulates many biological functions. Akt is activated during growth factor stimulation through a process that requires binding of Akt to phosphatidylinositol 3,4,5-trisphosphate (PIP3), which promotes membrane localization and phosphorylation of Akt by the upstream kinase PDK1 (phosphoinositide-dependent protein kinase 1). We show that Akt and PDK1 are acetylated at lysine residues in their pleckstrin homology domains, which mediate PIP3 binding. Acetylation blocked binding of Akt and PDK1 to PIP3, thereby preventing membrane localization and phosphorylation of Akt. Deacetylation by SIRT1 enhanced binding of Akt and PDK1 to PIP3 and promoted their activation. Mice injected with cells expressing a mutant that mimicked a constitutively acetylated form of Akt developed smaller tumors than those injected with cells expressing wild-type Akt. Furthermore, impaired Akt activation in the hearts of SIRT1-deficient mice was associated with reduced cardiac hypertrophy in response to physical exercise and angiotensin II. These findings uncover a key posttranslational modification of Akt that is important for its oncogenic and hypertrophic activities.

* To whom correspondence should be addressed. E-mail: mgupta{at}

Citation: N. R. Sundaresan, V. B. Pillai, D. Wolfgeher, S. Samant, P. Vasudevan, V. Parekh, H. Raghuraman, J. M. Cunningham, M. Gupta, M. P. Gupta, The Deacetylase SIRT1 Promotes Membrane Localization and Activation of Akt and PDK1 During Tumorigenesis and Cardiac Hypertrophy. Sci. Signal. 4, ra46 (2011).

Read the Full Text

Mitochondrial Matrix Ca2+ Accumulation Regulates Cytosolic NAD+/NADH Metabolism, Protein Acetylation, and Sirtuin Expression.
R. Marcu, B. M. Wiczer, C. K. Neeley, and B. J. Hawkins (2014)
Mol. Cell. Biol. 34, 2890-2902
   Abstract »    Full Text »    PDF »
Blocking Sirtuin 1 and 2 Inhibits Renal Interstitial Fibroblast Activation and Attenuates Renal Interstitial Fibrosis in Obstructive Nephropathy.
M. Ponnusamy, X. Zhou, Y. Yan, J. Tang, E. Tolbert, T. C. Zhao, R. Gong, and S. Zhuang (2014)
J. Pharmacol. Exp. Ther. 350, 243-256
   Abstract »    Full Text »    PDF »
Heart Failure With Preserved Ejection Fraction: Molecular Pathways of the Aging Myocardium.
F. S. Loffredo, A. P. Nikolova, J. R. Pancoast, and R. T. Lee (2014)
Circ. Res. 115, 97-107
   Abstract »    Full Text »    PDF »
Cross-talk between Sirtuin and Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling in the Regulation of S6 Kinase 1 (S6K1) Phosphorylation.
S. Hong, B. Zhao, D. B. Lombard, D. C. Fingar, and K. Inoki (2014)
J. Biol. Chem. 289, 13132-13141
   Abstract »    Full Text »    PDF »
Role of AKT signaling in DNA repair and clinical response to cancer therapy.
Q. Liu, K. M. Turner, W. K. Yung, K. Chen, and W. Zhang (2014)
Neuro Oncology
   Abstract »    Full Text »    PDF »
Reversible acetylation regulates vascular endothelial growth factor receptor-2 activity.
A. Zecchin, L. Pattarini, M. I. Gutierrez, M. Mano, A. Mai, S. Valente, M. P. Myers, S. Pantano, and M. Giacca (2014)
J Mol Cell Biol 6, 116-127
   Abstract »    Full Text »    PDF »
Sirt2 Deacetylase Is a Novel AKT Binding Partner Critical for AKT Activation by Insulin.
G. Ramakrishnan, G. Davaakhuu, L. Kaplun, W.-C. Chung, A. Rana, A. Atfi, L. Miele, and G. Tzivion (2014)
J. Biol. Chem. 289, 6054-6066
   Abstract »    Full Text »    PDF »
Regulation of Akt Signaling by Sirtuins: Its Implication in Cardiac Hypertrophy and Aging.
V. B. Pillai, N. R. Sundaresan, and M. P. Gupta (2014)
Circ. Res. 114, 368-378
   Abstract »    Full Text »    PDF »
SIRT1 Protein, by Blocking the Activities of Transcription Factors FoxO1 and FoxO3, Inhibits Muscle Atrophy and Promotes Muscle Growth.
D. Lee and A. L. Goldberg (2013)
J. Biol. Chem. 288, 30515-30526
   Abstract »    Full Text »    PDF »
Akt SUMOylation Regulates Cell Proliferation and Tumorigenesis.
R. Li, J. Wei, C. Jiang, D. Liu, L. Deng, K. Zhang, and P. Wang (2013)
Cancer Res. 73, 5742-5753
   Abstract »    Full Text »    PDF »
A Cardiac-enriched MicroRNA, miR-378, Blocks Cardiac Hypertrophy by Targeting Ras Signaling.
R. S. Nagalingam, N. R. Sundaresan, M. P. Gupta, D. L. Geenen, R. J. Solaro, and M. Gupta (2013)
J. Biol. Chem. 288, 11216-11232
   Abstract »    Full Text »    PDF »
ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4.
J. Mori, O. A. Alrob, C. S. Wagg, R. A. Harris, G. D. Lopaschuk, and G. Y. Oudit (2013)
Am J Physiol Heart Circ Physiol 304, H1103-H1113
   Abstract »    Full Text »    PDF »
Sirt1 inhibits the transcription factor CREB to regulate pituitary growth hormone synthesis.
J. Monteserin-Garcia, O. Al-Massadi, L. M. Seoane, C. V. Alvarez, B. Shan, J. Stalla, M. Paez-Pereda, F. F. Casanueva, G. K. Stalla, and M. Theodoropoulou (2013)
FASEB J 27, 1561-1571
   Abstract »    Full Text »    PDF »
SIRT1 is a Highly Networked Protein That Mediates the Adaptation to Chronic Physiological Stress.
M. W. McBurney, K. V. Clark-Knowles, A. Z. Caron, and D. A. Gray (2013)
Genes & Cancer 4, 125-134
   Abstract »    Full Text »    PDF »
From Sirtuin Biology to Human Diseases: An Update.
C. Sebastian, F. K. Satterstrom, M. C. Haigis, and R. Mostoslavsky (2012)
J. Biol. Chem. 287, 42444-42452
   Abstract »    Full Text »    PDF »
The Intersection Between Aging and Cardiovascular Disease.
B. J. North and D. A. Sinclair (2012)
Circ. Res. 110, 1097-1108
   Abstract »    Full Text »    PDF »
Growth Factors, Nutrient Signaling, and Cardiovascular Aging.
L. Fontana, M. Vinciguerra, and V. D. Longo (2012)
Circ. Res. 110, 1139-1150
   Abstract »    Full Text »    PDF »
SIRT1-mediated acute cardioprotection.
S. M. Nadtochiy, H. Yao, M. W. McBurney, W. Gu, L. Guarente, I. Rahman, and P. S. Brookes (2011)
Am J Physiol Heart Circ Physiol 301, H1506-H1512
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882