Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Sci. Signal., 2 August 2011
Vol. 4, Issue 184, p. ra50
[DOI: 10.1126/scisignal.2001945]


Structure of a Light-Activated LOV Protein Dimer That Regulates Transcription

Anand T. Vaidya1, Chen-Hui Chen2, Jay C. Dunlap2, Jennifer J. Loros3, and Brian R. Crane1*

1 Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
2 Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA.
3 Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA.

Abstract: Light, oxygen, or voltage (LOV) protein domains are present in many signaling proteins in bacteria, archaea, protists, plants, and fungi. The LOV protein VIVID (VVD) of the filamentous fungus Neurospora crassa enables the organism to adapt to constant or increasing amounts of light and facilitates proper entrainment of circadian rhythms. Here, we determined the crystal structure of the fully light-adapted VVD dimer and reveal the mechanism by which light-driven conformational change alters the oligomeric state of the protein. Light-induced formation of a cysteinyl-flavin adduct generated a new hydrogen bond network that released the amino (N) terminus from the protein core and restructured an acceptor pocket for binding of the N terminus on the opposite subunit of the dimer. Substitution of residues critical for the switch between the monomeric and the dimeric states of the protein had profound effects on light adaptation in Neurospora. The mechanism of dimerization of VVD provides molecular details that explain how members of a large family of photoreceptors convert light responses to alterations in protein-protein interactions.

* To whom correspondence should be addressed. E-mail: bc69{at}

Citation: A. T. Vaidya, C.-H. Chen, J. C. Dunlap, J. J. Loros, B. R. Crane, Structure of a Light-Activated LOV Protein Dimer That Regulates Transcription. Sci. Signal. 4, ra50 (2011).

Read the Full Text

The Neurospora photoreceptor VIVID exerts negative and positive control on light sensing to achieve adaptation.
E. Gin, A. C. R. Diernfellner, M. Brunner, and T. Hofer (2014)
Mol Syst Biol 9, 667
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882