Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 18 October 2011
Vol. 4, Issue 195, p. re2
[DOI: 10.1126/scisignal.2002165]

REVIEWS

Structural Basis for Activation and Inhibition of Class I Phosphoinositide 3-Kinases

Oscar Vadas*, John E. Burke, Xuxiao Zhang{dagger}, Alex Berndt, and Roger L. Williams*

Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
{dagger} Present address: School of Biological Science, Nanyang Technological University, 138673 Singapore.

Abstract: Phosphoinositide 3-kinases (PI3Ks) are implicated in a broad spectrum of cellular activities, such as growth, proliferation, differentiation, migration, and metabolism. Activation of class I PI3Ks by mutation or overexpression correlates with the development and maintenance of various human cancers. These PI3Ks are heterodimers, and the activity of the catalytic subunits is tightly controlled by the associated regulatory subunits. Although the same p85 regulatory subunits associate with all class IA PI3Ks, the functional outcome depends on the isotype of the catalytic subunit. New PI3K partners that affect the signaling by the PI3K heterodimers have been uncovered, including phosphate and tensin homolog (PTEN), cyclic adenosine monophosphate–dependent protein kinase (PKA), and nonstructural protein 1. Interactions with PI3K regulators modulate the intrinsic membrane affinity and either the rate of phosphoryl transfer or product release. Crystal structures for the class I and class III PI3Ks in complexes with associated regulators and inhibitors have contributed to developing isoform-specific inhibitors and have shed light on the numerous regulatory mechanisms controlling PI3K activation and inhibition.

* To whom correspondence should be addressed. E-mail: ovadas{at}mrc-lmb.cam.ac.uk (O.V.); rlw{at}mrc-lmb.cam.ac.uk (R.L.W.)

Citation: O. Vadas, J. E. Burke, X. Zhang, A. Berndt, R. L. Williams, Structural Basis for Activation and Inhibition of Class I Phosphoinositide 3-Kinases. Sci. Signal. 4, re2 (2011).

Read the Full Text


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Classes of phosphoinositide 3-kinases at a glance.
S. Jean and A. A. Kiger (2014)
J. Cell Sci. 127, 923-928
   Abstract »    Full Text »    PDF »
DW09849, a Selective Phosphatidylinositol 3-Kinase (PI3K) Inhibitor, Prevents PI3K Signaling and Preferentially Inhibits Proliferation of Cells Containing the Oncogenic Mutation p110{alpha} (H1047R).
J.-l. Liu, G.-r. Gao, X. Zhang, S.-f. Cao, C.-l. Guo, X. Wang, L.-j. Tong, J. Ding, W.-h. Duan, and L.-h. Meng (2014)
J. Pharmacol. Exp. Ther. 348, 432-441
   Abstract »    Full Text »    PDF »
The Structural Basis of PI3K Cancer Mutations: From Mechanism to Therapy.
S. Liu, S. Knapp, and A. A. Ahmed (2014)
Cancer Res. 74, 641-646
   Abstract »    Full Text »    PDF »
Targeting Small Cell Lung Cancer Harboring PIK3CA Mutation with a Selective Oral PI3K Inhibitor PF-4989216.
M. Walls, S. M. Baxi, P. P. Mehta, K. K.- C. Liu, J. Zhu, H. Estrella, C. Li, M. Zientek, Q. Zong, T. Smeal, et al. (2014)
Clin. Cancer Res. 20, 631-643
   Abstract »    Full Text »    PDF »
Insulin Receptor Signaling in Normal and Insulin-Resistant States.
J. Boucher, A. Kleinridders, and C. R. Kahn (2014)
Cold Spring Harb Perspect Biol 6, a009191
   Abstract »    Full Text »    PDF »
Molecular determinants of PI3K{gamma}-mediated activation downstream of G-protein-coupled receptors (GPCRs).
O. Vadas, H. A. Dbouk, A. Shymanets, O. Perisic, J. E. Burke, W. F. Abi Saab, B. D. Khalil, C. Harteneck, A. R. Bresnick, B. Nurnberg, et al. (2013)
PNAS 110, 18862-18867
   Abstract »    Full Text »    PDF »
Phosphoinositide 3-Kinase {delta} Gene Mutation Predisposes to Respiratory Infection and Airway Damage.
I. Angulo, O. Vadas, F. Garcon, E. Banham-Hall, V. Plagnol, T. R. Leahy, H. Baxendale, T. Coulter, J. Curtis, C. Wu, et al. (2013)
Science 342, 866-871
   Abstract »    Full Text »    PDF »
p87 and p101 Subunits Are Distinct Regulators Determining Class IB Phosphoinositide 3-Kinase (PI3K) Specificity.
A. Shymanets, Prajwal, K. Bucher, S. Beer-Hammer, C. Harteneck, and B. Nurnberg (2013)
J. Biol. Chem. 288, 31059-31068
   Abstract »    Full Text »    PDF »
Differential Roles of CXCL2 and CXCL3 and Their Receptors in Regulating Normal and Asthmatic Airway Smooth Muscle Cell Migration.
L. A. Al-Alwan, Y. Chang, A. Mogas, A. J. Halayko, C. J. Baglole, J. G. Martin, S. Rousseau, D. H. Eidelman, and Q. Hamid (2013)
J. Immunol. 191, 2731-2741
   Abstract »    Full Text »    PDF »
Cyclooxygenase-2 Deficiency in Macrophages Leads to Defective p110{gamma} PI3K Signaling and Impairs Cell Adhesion and Migration.
M. D. Diaz-Munoz, I. C. Osma-Garcia, M. A. Iniguez, and M. Fresno (2013)
J. Immunol. 191, 395-406
   Abstract »    Full Text »    PDF »
Selective Inactivation of PTEN in Smooth Muscle Cells Synergizes With Hypoxia to Induce Severe Pulmonary Hypertension.
H. Horita, S. B. Furgeson, A. Ostriker, K. A. Olszewski, T. Sullivan, L. R. Villegas, M. Levine, J. E. Parr, C. D. Cool, R. A. Nemenoff, et al. (2013)
JAHA 2, e000188
   Abstract »    Full Text »    PDF »
The Expanding Roles of G{beta}{gamma} Subunits in G Protein-Coupled Receptor Signaling and Drug Action.
S. M. Khan, R. Sleno, S. Gora, P. Zylbergold, J.-P. Laverdure, J.-C. Labbe, G. J. Miller, and T. E. Hebert (2013)
Pharmacol. Rev. 65, 545-577
   Abstract »    Full Text »    PDF »
Phosphodiesterase-3 inhibition augments the myocardial infarct size-limiting effects of exenatide in mice with type 2 diabetes.
Y. Ye, J. Qian, A. C. Castillo, S. Ling, H. Ye, J. R. Perez-Polo, M. Bajaj, and Y. Birnbaum (2013)
Am J Physiol Heart Circ Physiol 304, H131-H141
   Abstract »    Full Text »    PDF »
Evolution of the eukaryotic protein kinases as dynamic molecular switches.
S. S. Taylor, M. M. Keshwani, J. M. Steichen, and A. P. Kornev (2012)
Phil Trans R Soc B 367, 2517-2528
   Abstract »    Full Text »    PDF »
Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110{alpha} (PIK3CA).
J. E. Burke, O. Perisic, G. R. Masson, O. Vadas, and R. L. Williams (2012)
PNAS 109, 15259-15264
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882