Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 24 January 2012
Vol. 5, Issue 208, p. pe4
[DOI: 10.1126/scisignal.2002799]

PERSPECTIVES

Depletion of Extracellular Ca2+ Prompts Astroglia to Moderate Synaptic Network Activity

Dmitri A. Rusakov*

University College London (UCL) Institute of Neurology, UCL, WC1N 3BG, London, UK.

Abstract: Over the past decade, rapid signal exchange between astroglia and neurons across the interstitial space emerged as an essential element of synaptic circuit functioning in the brain. How and where exactly this exchange occurs in various physiological scenarios and the underlying cellular cascades remain a subject of intense study. The excitatory neurotransmitter glutamate and the inhibitory neurotransmitter {gamma}-aminobutyric acid are thought to be the primary signal carriers that are regularly dispatched by active synapses to engage target receptors and transporters on the surface of astrocytes. New evidence identifies another ubiquitous messenger, extracellular calcium ions (Ca2+), which can report neural network activity to astroglia. Astrocytes in the hippocampus can respond to activity-induced partial Ca2+ depletion in the extracellular space by generating prominent intracellular Ca2+ waves. The underlying Ca2+ sensing mechanism is proposed to involve the opening of the hemichannel connexin 43 in astrocytes, which in turn triggers the release of adenosine triphosphate to boost the activity of inhibitory interneurons, thus potentially providing negative feedback to tame excessive excitatory activity of neural circuits.

* Corresponding author. E-mail: d.rusakov{at}ucl.ac.uk

Citation: D. A. Rusakov, Depletion of Extracellular Ca2+ Prompts Astroglia to Moderate Synaptic Network Activity. Sci. Signal. 5, pe4 (2012).

Read the Full Text



To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882