Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 20 March 2012
Vol. 5, Issue 216, p. pe11
[DOI: 10.1126/scisignal.2002963]

PERSPECTIVES

The Structure of the TLR5-Flagellin Complex: A New Mode of Pathogen Detection, Conserved Receptor Dimerization for Signaling

Jinghua Lu and Peter D. Sun*

Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD 20852, USA.

Abstract: Knowledge about how Toll-like receptors (TLRs) recognize pathogenic ligands is critical to understanding how these receptors are activated and to designing therapeutic compounds that target this family of receptors for inflammatory diseases. The crystal structure of TLR5 in complex with its bacterial ligand flagellin revealed that the ligand-binding mode for TLR5 is distinct from that of previously characterized TLRs. Nevertheless, like other TLRs, TLR5 forms a dimer in response to ligand binding. This work contributes to our current knowledge of TLR function and further demonstrates the ability of TLRs to couple versatile ligand recognition to a conserved receptor signaling mechanism.

* Corresponding author. E-mail: psun{at}nih.gov

Citation: J. Lu, P. D. Sun, The Structure of the TLR5-Flagellin Complex: A New Mode of Pathogen Detection, Conserved Receptor Dimerization for Signaling. Sci. Signal. 5, pe11 (2012).

Read the Full Text



To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882