Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Sci. Signal., 25 February 2014
Vol. 7, Issue 314, p. ra19
[DOI: 10.1126/scisignal.2004479]

RESEARCH ARTICLES

Arginine Methylation of CRTC2 Is Critical in the Transcriptional Control of Hepatic Glucose Metabolism

Hye-Sook Han1, Chang-Yun Jung2, Young-Sil Yoon1, Seri Choi1, Dahee Choi1,2, Geon Kang1, Keun-Gyu Park3, Seong-Tae Kim2, and Seung-Hoi Koo1*

1 Division of Life Sciences, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 136-713, Korea.
2 Division of Biochemistry and Molecular Biology, Department of Molecular Cell Biology and Samsung Biomedical Institute, Sungkyunkwan University School of Medicine, 300 Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746, Korea.
3 Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 700-721, Korea.

Abstract: Fasting glucose homeostasis is maintained in part through cAMP (adenosine 3',5'-monophosphate)–dependent transcriptional control of hepatic gluconeogenesis by the transcription factor CREB (cAMP response element–binding protein) and its coactivator CRTC2 (CREB-regulated transcriptional coactivator 2). We showed that PRMT6 (protein arginine methyltransferase 6) promotes fasting-induced transcriptional activation of the gluconeogenic program involving CRTC2. Mass spectrometric analysis indicated that PRMT6 associated with CRTC2. In cells, PRMT6 mediated asymmetric dimethylation of multiple arginine residues of CRTC2, which enhanced the association of CRTC2 with CREB on the promoters of gluconeogenic enzyme–encoding genes. In mice, ectopic expression of PRMT6 promoted higher blood glucose concentrations, which were associated with increased expression of genes encoding gluconeogenic factors, whereas knockdown of hepatic PRMT6 decreased fasting glycemia and improved pyruvate tolerance. The abundance of hepatic PRMT6 was increased in mouse models of obesity and insulin resistance, and adenovirus-mediated depletion of PRMT6 restored euglycemia in these mice. We propose that PRMT6 is involved in the regulation of hepatic glucose metabolism in a CRTC2-dependent manner.

* Corresponding author. E-mail: koohoi{at}korea.ac.kr

Citation: H.-S. Han, C.-Y. Jung, Y.-S. Yoon, S. Choi, D. Choi, G. Kang, K.-G. Park, S.-T. Kim, S.-H. Koo, Arginine Methylation of CRTC2 Is Critical in the Transcriptional Control of Hepatic Glucose Metabolism. Sci. Signal. 7, ra19 (2014).

Read the Full Text



To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882