Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Development 131 (9): 1927-1938

Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways

Douglas J. Bornemann1, Jason E. Duncan2, William Staatz3, Scott Selleck4, and Rahul Warrior1,*

1 Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
2 Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
3 Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
4 Departments of Pediatrics and Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA

* Author for correspondence (e-mail: rwarrior{at}uci.edu)

Accepted for publication 5 January 2004.

Abstract: Studies in Drosophila and vertebrate systems have demonstrated that heparan sulfate proteoglycans (HSPGs) play crucial roles in modulating growth factor signaling. We have isolated mutations in sister of tout velu (sotv), a gene that encodes a co-polymerase that synthesizes HSPG glycosaminoglycan (GAG) chains. Our phenotypic and biochemical analyses reveal that HS levels are dramatically reduced in the absence of Sotv or its partner co-polymerase Tout velu (Ttv), suggesting that both copolymerases are essential for GAG synthesis. Furthermore, we find that mutations in sotv and ttv impair Hh, Wg and Decapentaplegic (Dpp) signaling. This contrasts with previous studies that suggested loss of ttv compromises only Hh signaling. Our results may contribute to understanding the biological basis of hereditary multiple exostoses (HME), a disease associated with bone overgrowth that results from mutations in EXT1 and EXT2, the human orthologs of ttv and sotv.

Key Words: Growth factor signaling • Heparan sulfate proteoglycan • Hedgehog • Wingless • Decapentaplegic • Tout velu • Sister of tout velu • Hereditary multiple exostoses • EXT1 • EXT2


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Heparan sulfate on intestinal epithelial cells plays a critical role in intestinal crypt homeostasis via Wnt/{beta}-catenin signaling.
S. Yamamoto, H. Nakase, M. Matsuura, Y. Honzawa, K. Matsumura, N. Uza, Y. Yamaguchi, E. Mizoguchi, and T. Chiba (2013)
Am J Physiol Gastrointest Liver Physiol 305, G241-G249
   Abstract »    Full Text »    PDF »
The Drosophila WIF1 homolog Shifted maintains glypican-independent Hedgehog signaling and interacts with the Hedgehog co-receptors Ihog and Boi.
A. Avanesov and S. S. Blair (2013)
Development 140, 107-116
   Abstract »    Full Text »    PDF »
An Emerging Role of Sonic Hedgehog Shedding as a Modulator of Heparan Sulfate Interactions.
S. Ohlig, U. Pickhinke, S. Sirko, S. Bandari, D. Hoffmann, R. Dreier, P. Farshi, M. Gotz, and K. Grobe (2012)
J. Biol. Chem. 287, 43708-43719
   Abstract »    Full Text »    PDF »
Wnt Proteins.
K. Willert and R. Nusse (2012)
Cold Spring Harb Perspect Biol 4, a007864
   Abstract »    Full Text »    PDF »
Drosophila Heparan Sulfate, a Novel Design.
M. Kusche-Gullberg, K. Nybakken, N. Perrimon, and U. Lindahl (2012)
J. Biol. Chem. 287, 21950-21956
   Abstract »    Full Text »    PDF »
Crossveinless d is a vitellogenin-like lipoprotein that binds BMPs and HSPGs, and is required for normal BMP signaling in the Drosophila wing.
J. Chen, S. M. Honeyager, J. Schleede, A. Avanesov, A. Laughon, and S. S. Blair (2012)
Development 139, 2170-2176
   Abstract »    Full Text »    PDF »
Wnt/Wingless Signaling in Drosophila.
S. Swarup and E. M. Verheyen (2012)
Cold Spring Harb Perspect Biol 4, a007930
   Abstract »    Full Text »    PDF »
Size control of the Drosophila hematopoietic niche by bone morphogenetic protein signaling reveals parallels with mammals.
D. Pennetier, J. Oyallon, I. Morin-Poulard, S. Dejean, A. Vincent, and M. Crozatier (2012)
PNAS 109, 3389-3394
   Abstract »    Full Text »    PDF »
Golgi Glycosylation and Human Inherited Diseases.
H. H. Freeze and B. G. Ng (2011)
Cold Spring Harb Perspect Biol 3, a005371
   Abstract »    Full Text »    PDF »
Heparan Sulfate Proteoglycans.
S. Sarrazin, W. C. Lamanna, and J. D. Esko (2011)
Cold Spring Harb Perspect Biol 3, a004952
   Abstract »    Full Text »    PDF »
Host and Pathogen Glycosaminoglycan-Binding Proteins Modulate Antimicrobial Peptide Responses in Drosophila melanogaster.
Z. Wang, L. A. Flax, M. M. Kemp, R. J. Linhardt, and M. J. Baron (2011)
Infect. Immun. 79, 606-616
   Abstract »    Full Text »    PDF »
Heparan Sulfate Acts as a Bone Morphogenetic Protein Coreceptor by Facilitating Ligand-induced Receptor Hetero-oligomerization.
W.-J. Kuo, M. A. Digman, and A. D. Lander (2010)
Mol. Biol. Cell 21, 4028-4041
   Abstract »    Full Text »    PDF »
Two Pathways for Importing GDP-fucose into the Endoplasmic Reticulum Lumen Function Redundantly in the O-Fucosylation of Notch in Drosophila.
H. O. Ishikawa, T. Ayukawa, M. Nakayama, S. Higashi, S. Kamiyama, S. Nishihara, K. Aoki, N. Ishida, Y. Sanai, and K. Matsuno (2010)
J. Biol. Chem. 285, 4122-4129
   Abstract »    Full Text »    PDF »
A mouse model of osteochondromagenesis from clonal inactivation of Ext1 in chondrocytes.
K. B. Jones, V. Piombo, C. Searby, G. Kurriger, B. Yang, F. Grabellus, P. J. Roughley, J. A. Morcuende, J. A. Buckwalter, M. R. Capecchi, et al. (2010)
PNAS 107, 2054-2059
   Abstract »    Full Text »    PDF »
Mutation in the Heparan Sulfate Biosynthesis Enzyme EXT1 Influences Growth Factor Signaling and Fibroblast Interactions with the Extracellular Matrix.
C. Osterholm, M. M. Barczyk, M. Busse, M. Gronning, R. K. Reed, and M. Kusche-Gullberg (2009)
J. Biol. Chem. 284, 34935-34943
   Abstract »    Full Text »    PDF »
The extracellular regulation of bone morphogenetic protein signaling.
D. Umulis, M. B. O'Connor, and S. S. Blair (2009)
Development 136, 3715-3728
   Abstract »    Full Text »    PDF »
Shaping Morphogen Gradients by Proteoglycans.
D. Yan and X. Lin (2009)
Cold Spring Harb Perspect Biol 1, a002493
   Abstract »    Full Text »    PDF »
Heparan Sulfate-modulated, Metalloprotease-mediated Sonic Hedgehog Release from Producing Cells.
T. Dierker, R. Dreier, A. Petersen, C. Bordych, and K. Grobe (2009)
J. Biol. Chem. 284, 8013-8022
   Abstract »    Full Text »    PDF »
Host Glycosaminoglycan Confers Susceptibility to Bacterial Infection in Drosophila melanogaster.
M. J. Baron, S. L. Wong, K. Nybakken, V. J. Carey, and L. C. Madoff (2009)
Infect. Immun. 77, 860-866
   Abstract »    Full Text »    PDF »
A Targeted Gain-of-Function Screen Identifies Genes Affecting Salivary Gland Morphogenesis/Tubulogenesis in Drosophila.
V. Maybeck and K. Roper (2009)
Genetics 181, 543-565
   Abstract »    Full Text »    PDF »
Hedgehog: functions and mechanisms.
M. Varjosalo and J. Taipale (2008)
Genes & Dev. 22, 2454-2472
   Abstract »    Full Text »    PDF »
Heparan sulfate regulates ephrin-A3/EphA receptor signaling.
F. Irie, M. Okuno, K. Matsumoto, E. B. Pasquale, and Y. Yamaguchi (2008)
PNAS 105, 12307-12312
   Abstract »    Full Text »    PDF »
Heparan Sulphate Biosynthesis and Disease.
S. Nadanaka and H. Kitagawa (2008)
J. Biochem. 144, 7-14
   Abstract »    Full Text »    PDF »
A translational block to HSPG synthesis permits BMP signaling in the early Drosophila embryo.
D. J. Bornemann, S. Park, S. Phin, and R. Warrior (2008)
Development 135, 1039-1047
   Abstract »    Full Text »    PDF »
Functional Analysis of Proteoglycan Galactosyltransferase II RNA Interference Mutant Flies.
M. Ueyama, H. Takemae, Y. Ohmae, H. Yoshida, H. Toyoda, R. Ueda, and S. Nishihara (2008)
J. Biol. Chem. 283, 6076-6084
   Abstract »    Full Text »    PDF »
Heparan Sulfate Regulates Self-renewal and Pluripotency of Embryonic Stem Cells.
N. Sasaki, K. Okishio, K. Ui-Tei, K. Saigo, A. Kinoshita-Toyoda, H. Toyoda, T. Nishimura, Y. Suda, M. Hayasaka, K. Hanaoka, et al. (2008)
J. Biol. Chem. 283, 3594-3606
   Abstract »    Full Text »    PDF »
Patched, the receptor of Hedgehog, is a lipoprotein receptor.
A. Callejo, J. Culi, and I. Guerrero (2008)
PNAS 105, 912-917
   Abstract »    Full Text »    PDF »
Contribution of EXT1, EXT2, and EXTL3 to Heparan Sulfate Chain Elongation.
M. Busse, A. Feta, J. Presto, M. Wilen, M. Gronning, L. Kjellen, and M. Kusche-Gullberg (2007)
J. Biol. Chem. 282, 32802-32810
   Abstract »    Full Text »    PDF »
Heparan sulfate proteoglycans at a glance.
C. A. Kirkpatrick and S. B. Selleck (2007)
J. Cell Sci. 120, 1829-1832
   Full Text »    PDF »
toutvelu, a Regulator of Heparan Sulfate Proteoglycan Biosynthesis, Controls Guidance Cues for Germ-Cell Migration.
G. Deshpande, N. Sethi, and P. Schedl (2007)
Genetics 176, 905-912
   Abstract »    Full Text »    PDF »
Expression of rib-1, a Caenorhabditis elegans Homolog of the Human Tumor Suppressor EXT Genes, Is Indispensable for Heparan Sulfate Synthesis and Embryonic Morphogenesis.
H. Kitagawa, T. Izumikawa, S. Mizuguchi, K. Dejima, K. H. Nomura, N. Egusa, F. Taniguchi, J.-i. Tamura, K. Gengyo-Ando, S. Mitani, et al. (2007)
J. Biol. Chem. 282, 8533-8544
   Abstract »    Full Text »    PDF »
Isolation and Characterization of Nontubular Sca-1+Lin- Multipotent Stem/Progenitor Cells from Adult Mouse Kidney.
B. Dekel, L. Zangi, E. Shezen, S. Reich-Zeliger, S. Eventov-Friedman, H. Katchman, J. Jacob-Hirsch, N. Amariglio, G. Rechavi, R. Margalit, et al. (2006)
J. Am. Soc. Nephrol. 17, 3300-3314
   Abstract »    Full Text »    PDF »
How does cholesterol affect the way Hedgehog works?.
F. Wendler, X. Franch-Marro, and J.-P. Vincent (2006)
Development 133, 3055-3061
   Abstract »    Full Text »    PDF »
Shedding Light on the Distinct Functions of Proteoglycans.
S. B. Selleck (2006)
Sci. STKE 2006, pe17
   Abstract »    Full Text »    PDF »
Signal dynamics in Sonic hedgehog tissue patterning.
K. Saha and D. V. Schaffer (2006)
Development 133, 889-900
   Abstract »    Full Text »    PDF »
Cholesterol modification is necessary for controlled planar long-range activity of Hedgehog in Drosophila epithelia.
A. Gallet, L. Ruel, L. Staccini-Lavenant, and P. P. Therond (2006)
Development 133, 407-418
   Abstract »    Full Text »    PDF »
Hedgehog lipid modifications are required for Hedgehog stabilization in the extracellular matrix.
A. Callejo, C. Torroja, L. Quijada, and I. Guerrero (2006)
Development 133, 471-483
   Abstract »    Full Text »    PDF »
Heparan Sulfate Polymerization in Drosophila.
T. Izumikawa, N. Egusa, F. Taniguchi, K. Sugahara, and H. Kitagawa (2006)
J. Biol. Chem. 281, 1929-1934
   Abstract »    Full Text »    PDF »
HSPG synthesis by zebrafish Ext2 and Extl3 is required for Fgf10 signalling during limb development.
W. H. J. Norton, J. Ledin, H. Grandel, and C. J. Neumann (2005)
Development 132, 4963-4973
   Abstract »    Full Text »    PDF »
Mice deficient in Ext2 lack heparan sulfate and develop exostoses.
D. Stickens, B. M. Zak, N. Rougier, J. D. Esko, and Z. Werb (2005)
Development 132, 5055-5068
   Abstract »    Full Text »    PDF »
Syndecan regulates cell migration and axon guidance in C. elegans.
C. Rhiner, S. Gysi, E. Frohli, M. O. Hengartner, and A. Hajnal (2005)
Development 132, 4621-4633
   Abstract »    Full Text »    PDF »
Drosophila glypicans Dally and Dally-like shape the extracellular Wingless morphogen gradient in the wing disc.
C. Han, D. Yan, T. Y. Belenkaya, and X. Lin (2005)
Development 132, 667-679
   Abstract »    Full Text »    PDF »
Functions of heparan sulfate proteoglycans in cell signaling during development.
X. Lin (2004)
Development 131, 6009-6021
   Abstract »    Full Text »    PDF »
Incredible journey: how do developmental signals travel through tissue?.
A. J. Zhu and M. P. Scott (2004)
Genes & Dev. 18, 2985-2997
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882