Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Development 135 (17): 2927-2937

Two highly related regulatory subunits of PP2A exert opposite effects on TGF-β/Activin/Nodal signalling

Julie Batut1,*,{dagger}, Bernhard Schmierer1,*, Jing Cao2, Laurel A. Raftery2, Caroline S. Hill1,§, and Michael Howell1,{ddagger},§

1 Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
2 Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Bldg. 149 13th Street, Charlestown, MA 02129, USA.

§ Authors for correspondence (e-mails: caroline.hill{at}cancer.org.uk; michael.howell{at}cancer.org.uk)

Accepted for publication 1 July 2008.

Abstract: We identify B{alpha} (PPP2R2A) and B{delta} (PPP2R2D), two highly related members of the B family of regulatory subunits of the protein phosphatase PP2A, as important modulators of TGF-β/Activin/Nodal signalling that affect the pathway in opposite ways. Knockdown of B{alpha} in Xenopus embryos or mammalian tissue culture cells suppresses TGF-β/Activin/Nodal-dependent responses, whereas knockdown of B{delta} enhances these responses. Moreover, in Drosophila, overexpression of Smad2 rescues a severe wing phenotype caused by overexpression of the single Drosophila PP2A B subunit Twins. We show that, in vertebrates, B{alpha} enhances TGF-β/Activin/Nodal signalling by stabilising the basal levels of type I receptor, whereas B{delta} negatively modulates these pathways by restricting receptor activity. Thus, these highly related members of the same subfamily of PP2A regulatory subunits differentially regulate TGF-β/Activin/Nodal signalling to elicit opposing biological outcomes.

Key Words: PP2A regulatory B subunits • TGF-β/Activin/Nodal signalling • XenopusDrosophila


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Novel Protein Interactions with Endoglin and Activin Receptor-like Kinase 1: Potential Role in Vascular Networks.
G. Xu, M. Barrios-Rodiles, M. Jerkic, A. L. Turinsky, R. Nadon, S. Vera, D. Voulgaraki, J. L. Wrana, M. Toporsian, and M. Letarte (2014)
Mol. Cell. Proteomics 13, 489-502
   Abstract »    Full Text »    PDF »
TGF-{beta}: Duality of Function Between Tumor Prevention and Carcinogenesis.
D. R. Principe, J. A. Doll, J. Bauer, B. Jung, H. G. Munshi, L. Bartholin, B. Pasche, C. Lee, and P. J. Grippo (2014)
J Natl Cancer Inst 106, djt369
   Abstract »    Full Text »    PDF »
Proteomic Profiles of the Embryonic Chorioamnion and Uterine Caruncles in Buffaloes (Bubalus bubalis) with Normal and Retarded Embryonic Development.
M. L. Balestrieri, B. Gasparrini, G. Neglia, D. Vecchio, M. Strazzullo, A. Giovane, L. Servillo, L. Zicarelli, M. J. D'Occhio, and G. Campanile (2013)
Biol Reprod 88, 119
   Abstract »    Full Text »    PDF »
Polymorphisms in AKT3, FIGF, PRKAG3, and TGF-{beta} genes are associated with myofiber characteristics in chickens.
S. Chen, J. An, L. Lian, L. Qu, J. Zheng, G. Xu, and N. Yang (2013)
Poultry Science 92, 325-330
   Abstract »    Full Text »    PDF »
Protein Phosphatase 2A Regulates Innate Immune and Proteolytic Responses to Cigarette Smoke Exposure in the Lung.
A. M. Wallace, A. Hardigan, P. Geraghty, S. Salim, A. Gaffney, J. Thankachen, L. Arellanos, J. M. D'Armiento, and R. F. Foronjy (2012)
Toxicol. Sci. 126, 589-599
   Abstract »    Full Text »    PDF »
Regulation of c-Myc Protein Abundance by a Protein Phosphatase 2A-Glycogen Synthase Kinase 3{beta}-Negative Feedback Pathway.
L. Liu and R. N. Eisenman (2012)
Genes & Cancer 3, 23-36
   Abstract »    Full Text »    PDF »
Sequential Phosphorylation of Smoothened Transduces Graded Hedgehog Signaling.
Y. Su, J. K. Ospina, J. Zhang, A. P. Michelson, A. M. Schoen, and A. J. Zhu (2011)
Science Signaling 4, ra43
   Abstract »    Full Text »    PDF »
Smad inhibition by the Ste20 kinase Misshapen.
S. Kaneko, X. Chen, P. Lu, X. Yao, T. G. Wright, M. Rajurkar, K.-i. Kariya, J. Mao, Y. T. Ip, and L. Xu (2011)
PNAS 108, 11127-11132
   Abstract »    Full Text »    PDF »
A Smad action turnover switch operated by WW domain readers of a phosphoserine code.
E. Aragon, N. Goerner, A.-I. Zaromytidou, Q. Xi, A. Escobedo, J. Massague, and M. J. Macias (2011)
Genes & Dev. 25, 1275-1288
   Abstract »    Full Text »    PDF »
Hypoxia-activated Smad3-specific Dephosphorylation by PP2A.
P. T. Heikkinen, M. Nummela, S.-K. Leivonen, J. Westermarck, C. S. Hill, V.-M. Kahari, and P. M. Jaakkola (2010)
J. Biol. Chem. 285, 3740-3749
   Abstract »    Full Text »    PDF »
The regulation of TGF{beta} signal transduction.
A. Moustakas and C.-H. Heldin (2009)
Development 136, 3699-3714
   Abstract »    Full Text »    PDF »
Nodal Morphogens.
A. F. Schier (2009)
Cold Spring Harb Perspect Biol 1, a003459
   Abstract »    Full Text »    PDF »
PP2A regulates BMP signalling by interacting with BMP receptor complexes and by dephosphorylating both the C-terminus and the linker region of Smad1.
L. Bengtsson, R. Schwappacher, M. Roth, J. H. Boergermann, S. Hassel, and P. Knaus (2009)
J. Cell Sci. 122, 1248-1257
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882