Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Development 137 (17): 2905-2913


RESEARCH ARTICLE

Strigolactones enhance competition between shoot branches by dampening auxin transport

Scott Crawford*,{dagger}, Naoki Shinohara{dagger}, Tobias Sieberer{ddagger}, Lisa Williamson, Gilu George, Jo Hepworth, Dörte Müller, Malgorzata A. Domagalska, and Ottoline Leyser§

Department of Biology, University of York, York YO10 5DD, UK.

§ Author for correspondence (hmol1{at}york.ac.uk)

Accepted for publication 14 June 2010.

Abstract: Strigolactones (SLs), or their derivatives, were recently demonstrated to act as endogenous shoot branching inhibitors, but their biosynthesis and mechanism of action are poorly understood. Here we show that the branching phenotype of mutants in the Arabidopsis P450 family member, MAX1, can be fully rescued by strigolactone addition, suggesting that MAX1 acts in SL synthesis. We demonstrate that SLs modulate polar auxin transport to control branching and that both the synthetic SL GR24 and endogenous SL synthesis significantly reduce the basipetal transport of a second branch-regulating hormone, auxin. Importantly, GR24 inhibits branching only in the presence of auxin in the main stem, and enhances competition between two branches on a common stem. Together, these results support two current hypotheses: that auxin moving down the main stem inhibits branch activity by preventing the establishment of auxin transport out of axillary branches; and that SLs act by dampening auxin transport, thus enhancing competition between branches.

Key Words: StrigolactoneAuxin transportShoot branchingArabidopsis


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Sugar demand, not auxin, is the initial regulator of apical dominance.
M. G. Mason, J. J. Ross, B. A. Babst, B. N. Wienclaw, and C. A. Beveridge (2014)
PNAS 111, 6092-6097
   Abstract »    Full Text »    PDF »
The embryonic shoot: a lifeline through winter.
C. van der Schoot, L. K. Paul, and P. L. H. Rinne (2014)
J. Exp. Bot. 65, 1699-1712
   Abstract »    Full Text »    PDF »
Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice.
H. Sun, J. Tao, S. Liu, S. Huang, S. Chen, X. Xie, K. Yoneyama, Y. Zhang, and G. Xu (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana.
G. Passaia, G. Queval, J. Bai, M. Margis-Pinheiro, and C. H. Foyer (2014)
J. Exp. Bot. 65, 1403-1413
   Abstract »    Full Text »    PDF »
Strigolactone Promotes Degradation of DWARF14, an {alpha}/{beta} Hydrolase Essential for Strigolactone Signaling in Arabidopsis.
F. Chevalier, K. Nieminen, J. C. Sanchez-Ferrero, M. L. Rodriguez, M. Chagoyen, C. S. Hardtke, and P. Cubas (2014)
PLANT CELL 26, 1134-1150
   Abstract »    Full Text »    PDF »
Differential bud activation by a net positive root signal explains branching phenotype in prostrate clonal herbs: a model.
R. G. Thomas, F. Y. Li, and M. J. M. Hay (2014)
J. Exp. Bot. 65, 673-682
   Abstract »    Full Text »    PDF »
Carlactone is an endogenous biosynthetic precursor for strigolactones.
Y. Seto, A. Sado, K. Asami, A. Hanada, M. Umehara, K. Akiyama, and S. Yamaguchi (2014)
PNAS 111, 1640-1645
   Abstract »    Full Text »    PDF »
SUPPRESSOR OF MORE AXILLARY GROWTH2 1 Controls Seed Germination and Seedling Development in Arabidopsis.
J. P. Stanga, S. M. Smith, W. R. Briggs, and D. C. Nelson (2013)
Plant Physiology 163, 318-330
   Abstract »    Full Text »    PDF »
Strigolactones activate different hormonal pathways for regulation of root development in response to phosphate growth conditions.
H. Koltai (2013)
Ann. Bot. 112, 409-415
   Abstract »    Full Text »    PDF »
The role of auxin in shaping shoot architecture.
A. Gallavotti (2013)
J. Exp. Bot. 64, 2593-2608
   Abstract »    Full Text »    PDF »
Hormonal interactions and gene regulation can link monoecy and environmental plasticity to the evolution of dioecy in plants.
E. M. Golenberg and N. W. West (2013)
Am. J. Botany 100, 1022-1037
   Abstract »    Full Text »    PDF »
Using Arabidopsis to Study Shoot Branching in Biomass Willow.
S. P. Ward, J. Salmon, S. J. Hanley, A. Karp, and O. Leyser (2013)
Plant Physiology 162, 800-811
   Abstract »    Full Text »    PDF »
CAROTENOID CLEAVAGE DIOXYGENASE 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus.
J. Liu, M. Novero, T. Charnikhova, A. Ferrandino, A. Schubert, C. Ruyter-Spira, P. Bonfante, C. Lovisolo, H. J. Bouwmeester, and F. Cardinale (2013)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
BRANCHED1 Interacts with FLOWERING LOCUS T to Repress the Floral Transition of the Axillary Meristems in Arabidopsis.
M. Niwa, Y. Daimon, K.-i. Kurotani, A. Higo, J. L. Pruneda-Paz, G. Breton, N. Mitsuda, S. A. Kay, M. Ohme-Takagi, M. Endo, et al. (2013)
PLANT CELL 25, 1228-1242
   Abstract »    Full Text »    PDF »
The Florigen Genes FT and TSF Modulate Lateral Shoot Outgrowth in Arabidopsis thaliana.
K. Hiraoka, A. Yamaguchi, M. Abe, and T. Araki (2013)
Plant Cell Physiol. 54, 352-368
   Abstract »    Full Text »    PDF »
Grass Meristems I: Shoot Apical Meristem Maintenance, Axillary Meristem Determinacy and the Floral Transition.
M. Pautler, W. Tanaka, H.-Y. Hirano, and D. Jackson (2013)
Plant Cell Physiol. 54, 302-312
   Abstract »    Full Text »    PDF »
Diverse Roles of Strigolactones in Plant Development.
P. B. Brewer, H. Koltai, and C. A. Beveridge (2013)
Mol Plant 6, 18-28
   Abstract »    Full Text »    PDF »
KAI2- and MAX2-Mediated Responses to Karrikins and Strigolactones Are Largely Independent of HY5 in Arabidopsis Seedlings.
M. T. Waters and S. M. Smith (2013)
Mol Plant 6, 63-75
   Abstract »    Full Text »    PDF »
A Fluorescent Alternative to the Synthetic Strigolactone GR24.
A. Rasmussen, T. Heugebaert, C. Matthys, R. Van Deun, F.-D. Boyer, S. Goormachtig, C. Stevens, and D. Geelen (2013)
Mol Plant 6, 100-112
   Abstract »    Full Text »    PDF »
Dynamics of Strigolactone Function and Shoot Branching Responses in Pisum sativum.
E. A. Dun, A. de Saint Germain, C. Rameau, and C. A. Beveridge (2013)
Mol Plant 6, 128-140
   Abstract »    Full Text »    PDF »
Recent Advances in Strigolactone Research: Chemical and Biological Aspects.
Y. Seto, H. Kameoka, S. Yamaguchi, and J. Kyozuka (2012)
Plant Cell Physiol. 53, 1843-1853
   Abstract »    Full Text »    PDF »
Diverse Roles of Strigolactone Signaling in Maize Architecture and the Uncoupling of a Branching-Specific Subnetwork.
J. C. Guan, K. E. Koch, M. Suzuki, S. Wu, S. Latshaw, T. Petruff, C. Goulet, H. J. Klee, and D. R. McCarty (2012)
Plant Physiology 160, 1303-1317
   Abstract »    Full Text »    PDF »
PrCYP707A1, an ABA catabolic gene, is a key component of Phelipanche ramosa seed germination in response to the strigolactone analogue GR24.
M.-M. Lechat, J.-B. Pouvreau, T. Peron, M. Gauthier, G. Montiel, C. Veronesi, Y. Todoroki, B. Le Bizec, F. Monteau, D. Macherel, et al. (2012)
J. Exp. Bot. 63, 5311-5322
   Abstract »    Full Text »    PDF »
Structure-Activity Relationship Studies of Strigolactone-Related Molecules for Branching Inhibition in Garden Pea: Molecule Design for Shoot Branching.
F.-D. Boyer, A. de Saint Germain, J.-P. Pillot, J.-B. Pouvreau, V. X. Chen, S. Ramos, A. Stevenin, P. Simier, P. Delavault, J.-M. Beau, et al. (2012)
Plant Physiology 159, 1524-1544
   Abstract »    Full Text »    PDF »
The Arabidopsis Ortholog of Rice DWARF27 Acts Upstream of MAX1 in the Control of Plant Development by Strigolactones.
M. T. Waters, P. B. Brewer, J. D. Bussell, S. M. Smith, and C. A. Beveridge (2012)
Plant Physiology 159, 1073-1085
   Abstract »    Full Text »    PDF »
MAX2 Affects Multiple Hormones to Promote Photomorphogenesis.
H. Shen, L. Zhu, Q.-Y. Bu, and E. Huq (2012)
Mol Plant 5, 750-762
   Abstract »    Full Text »    PDF »
Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea.
A. Rasmussen, M. G. Mason, C. De Cuyper, P. B. Brewer, S. Herold, J. Agusti, D. Geelen, T. Greb, S. Goormachtig, T. Beeckman, et al. (2012)
Plant Physiology 158, 1976-1987
   Abstract »    Full Text »    PDF »
In the absence of BYPASS1-related gene function, the bps signal disrupts embryogenesis by an auxin-independent mechanism.
D.-K. Lee, J. M. Van Norman, C. Murphy, E. Adhikari, J. W. Reed, and L. E. Sieburth (2012)
Development 139, 805-815
   Abstract »    Full Text »    PDF »
The Pea TCP Transcription Factor PsBRC1 Acts Downstream of Strigolactones to Control Shoot Branching.
N. Braun, A. de Saint Germain, J.-P. Pillot, S. Boutet-Mercey, M. Dalmais, I. Antoniadi, X. Li, A. Maia-Grondard, C. Le Signor, N. Bouteiller, et al. (2012)
Plant Physiology 158, 225-238
   Abstract »    Full Text »    PDF »
Antagonistic Action of Strigolactone and Cytokinin in Bud Outgrowth Control.
E. A. Dun, A. de Saint Germain, C. Rameau, and C. A. Beveridge (2012)
Plant Physiology 158, 487-498
   Abstract »    Full Text »    PDF »
Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants.
J. Agusti, S. Herold, M. Schwarz, P. Sanchez, K. Ljung, E. A. Dun, P. B. Brewer, C. A. Beveridge, T. Sieberer, E. M. Sehr, et al. (2011)
PNAS 108, 20242-20247
   Abstract »    Full Text »    PDF »
The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants.
J. A. Banks, T. Nishiyama, M. Hasebe, J. L. Bowman, M. Gribskov, C. dePamphilis, V. A. Albert, N. Aono, T. Aoyama, B. A. Ambrose, et al. (2011)
Science 332, 960-963
   Abstract »    Full Text »    PDF »
Seven Things We Think We Know about Auxin Transport.
W. A. Peer, J. J. Blakeslee, H. Yang, and A. S. Murphy (2011)
Mol Plant 4, 487-504
   Abstract »    Full Text »    PDF »
Auxin, cytokinin and the control of shoot branching.
D. Muller and O. Leyser (2011)
Ann. Bot. 107, 1203-1212
   Abstract »    Full Text »    PDF »
Physiological Effects of the Synthetic Strigolactone Analog GR24 on Root System Architecture in Arabidopsis: Another Belowground Role for Strigolactones?.
C. Ruyter-Spira, W. Kohlen, T. Charnikhova, A. van Zeijl, L. van Bezouwen, N. de Ruijter, C. Cardoso, J. A. Lopez-Raez, R. Matusova, R. Bours, et al. (2011)
Plant Physiology 155, 721-734
   Abstract »    Full Text »    PDF »
Strigolactones Are Transported through the Xylem and Play a Key Role in Shoot Architectural Response to Phosphate Deficiency in Nonarbuscular Mycorrhizal Host Arabidopsis.
W. Kohlen, T. Charnikhova, Q. Liu, R. Bours, M. A. Domagalska, S. Beguerie, F. Verstappen, O. Leyser, H. Bouwmeester, and C. Ruyter-Spira (2011)
Plant Physiology 155, 974-987
   Abstract »    Full Text »    PDF »
Existing branches correlatively inhibit further branching in Trifolium repens: possible mechanisms.
R. G. Thomas and M. J. M. Hay (2011)
J. Exp. Bot. 62, 1027-1036
   Abstract »    Full Text »    PDF »
The Power of Auxin in Plants.
O. Leyser (2010)
Plant Physiology 154, 501-505
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882