Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Genes & Dev. 13 (7): 804-816

Copyright © 1999 by Cold Spring Harbor Laboratory Press.

Vol. 13, No. 7, pp. 804-816, April 1, 1999

A mechanism of repression of TGFbeta / Smad signaling by oncogenic Ras

Marcus Kretzschmar,1,2 Jacqueline Doody,1 Inna Timokhina,1,2 and Joan Massagué1,3

1 Cell Biology Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021 USA

TGFbeta can override the proliferative effects of EGF and other Ras-activating mitogens in normal epithelial cells. However, epithelial cells harboring oncogenic Ras mutations often show a loss of TGFbeta antimitogenic responses. Here we report that oncogenic Ras inhibits TGFbeta signaling in mammary and lung epithelial cells by negatively regulating the TGFbeta mediators Smad2 and Smad3. Oncogenically activated Ras inhibits the TGFbeta -induced nuclear accumulation of Smad2 and Smad3 and Smad-dependent transcription. Ras acting via Erk MAP kinases causes phosphorylation of Smad2 and Smad3 at specific sites in the region linking the DNA-binding domain and the transcriptional activation domain. These sites are separate from the TGFbeta receptor phosphorylation sites that activate Smad nuclear translocation. Mutation of these MAP kinase sites in Smad3 yields a Ras-resistant form that can rescue the growth inhibitory response to TGFbeta in Ras-transformed cells. EGF, which is weaker than oncogenic mutations at activating Ras, induces a less extensive phosphorylation and cytoplasmic retention of Smad2 and Smad3. Our results suggest a mechanism for the counterbalanced regulation of Smad2/Smad3 by TGFbeta and Ras signals in normal cells, and for the silencing of antimitogenic TGFbeta functions by hyperactive Ras in cancer cells.

[Key Words: Growth inhibition; MAP kinase; Ras; Smad; TGFbeta ]

GENES & DEVELOPMENT 13:804-816 © 1999 by Cold Spring Harbor Laboratory Press  ISSN 0890-9369/99 $5.00

M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7.
X. Xiao, I. Gaffar, P. Guo, J. Wiersch, S. Fischbach, L. Peirish, Z. Song, Y. El-Gohary, K. Prasadan, C. Shiota, et al. (2014)
PNAS 111, E1211-E1220
   Abstract »    Full Text »    PDF »
FGF2-induced Ras-MAPK signalling maintains lymphatic endothelial cell identity by upregulating endothelial-cell-specific gene expression and suppressing TGF{beta} signalling through Smad2.
T. Ichise, N. Yoshida, and H. Ichise (2014)
J. Cell Sci. 127, 845-857
   Abstract »    Full Text »    PDF »
Disruption of the transforming growth factor-{beta} pathway by tolfenamic acid via the ERK MAP kinase pathway.
X. Zhang, K.-W. Min, J. Liggett, and S. J. Baek (2013)
Carcinogenesis 34, 2900-2907
   Abstract »    Full Text »    PDF »
Chemical Injury-Induced Corneal Opacity and Neovascularization Reduced by Rapamycin via TGF-{beta}1/ERK Pathways Regulation.
Y. J. Shin, J. Y. Hyon, W. S. Choi, K. Yi, E.-S. Chung, T.-Y. Chung, and W. R. Wee (2013)
Invest. Ophthalmol. Vis. Sci. 54, 4452-4458
   Abstract »    Full Text »    PDF »
New insights into extracellular and post-translational regulation of TGF-{beta} family signalling pathways.
O. Shimmi and S. J. Newfeld (2013)
J. Biochem. 154, 11-19
   Abstract »    Full Text »    PDF »
In Vivo Regulation of TGF-{beta} by R-Ras2 Revealed through Loss of the RasGAP Protein NF1.
D. M. Patmore, S. Welch, P. C. Fulkerson, J. Wu, K. Choi, D. Eaves, J. J. Kordich, M. H. Collins, T. P. Cripe, and N. Ratner (2012)
Cancer Res. 72, 5317-5327
   Abstract »    Full Text »    PDF »
H-Ras isoform modulates extracellular matrix synthesis, proliferation, and migration in fibroblasts.
I. Fuentes-Calvo, A. M. Blazquez-Medela, N. Eleno, E. Santos, J. M. Lopez-Novoa, and C. Martinez-Salgado (2012)
Am J Physiol Cell Physiol 302, C686-C697
   Abstract »    Full Text »    PDF »
Smad phosphoisoform signaling specificity: the right place at the right time.
K. Matsuzaki (2011)
Carcinogenesis 32, 1578-1588
   Abstract »    Full Text »    PDF »
EMILIN1-{alpha}4/{alpha}9 integrin interaction inhibits dermal fibroblast and keratinocyte proliferation.
C. Danussi, A. Petrucco, B. Wassermann, E. Pivetta, T. M. E. Modica, L. D. B. Belluz, A. Colombatti, and P. Spessotto (2011)
J. Cell Biol. 195, 131-145
   Abstract »    Full Text »    PDF »
TAK1-TAB2 Signaling Contributes to Bone Destruction by Breast Carcinoma Cells.
A. Safina, P. Sotomayor, M. Limoge, C. Morrison, and A. V. Bakin (2011)
Mol. Cancer Res. 9, 1042-1053
   Abstract »    Full Text »    PDF »
Smad inhibition by the Ste20 kinase Misshapen.
S. Kaneko, X. Chen, P. Lu, X. Yao, T. G. Wright, M. Rajurkar, K.-i. Kariya, J. Mao, Y. T. Ip, and L. Xu (2011)
PNAS 108, 11127-11132
   Abstract »    Full Text »    PDF »
Flow-dependent Smad2 phosphorylation and TGIF nuclear localization in human aortic endothelial cells.
R. D. Shepherd, S. M. Kos, and K. D. Rinker (2011)
Am J Physiol Heart Circ Physiol 301, H98-H107
   Abstract »    Full Text »    PDF »
A Smad action turnover switch operated by WW domain readers of a phosphoserine code.
E. Aragon, N. Goerner, A.-I. Zaromytidou, Q. Xi, A. Escobedo, J. Massague, and M. J. Macias (2011)
Genes & Dev. 25, 1275-1288
   Abstract »    Full Text »    PDF »
Distinctive Mechanism for Sustained TGF-{beta} Signaling and Growth Inhibition: MEK1 Activation-Dependent Stabilization of Type II TGF-{beta} Receptors.
G. Chen, P. Ghosh, and D. L. Longo (2011)
Mol. Cancer Res. 9, 78-89
   Abstract »    Full Text »    PDF »
The TGF-{beta} co-receptor endoglin modulates the expression and transforming potential of H-Ras.
J. F. Santibanez, E. Perez-Gomez, A. Fernandez-L, E. M. Garrido-Martin, A. Carnero, M. Malumbres, C. P. H. Vary, M. Quintanilla, and C. Bernabeu (2010)
Carcinogenesis 31, 2145-2154
   Abstract »    Full Text »    PDF »
GAM/ZFp/ZNF512B is central to a gene sensor circuitry involving cell-cycle regulators, TGF{beta} effectors, Drosha and microRNAs with opposite oncogenic potentials.
E. Tili, J.-J. Michaille, C.-G. Liu, H. Alder, C. Taccioli, S. Volinia, G. A. Calin, and C. M. Croce (2010)
Nucleic Acids Res. 38, 7673-7688
   Abstract »    Full Text »    PDF »
Recombinant human TAT-OP1 to enhance NGF neurogenic potential: preliminary studies on PC12 cells.
R. Di Liddo, C. Grandi, M. Venturini, D. Dalzoppo, A. Negro, M. T. Conconi, and P. P. Parnigotto (2010)
Protein Eng. Des. Sel. 23, 889-897
   Abstract »    Full Text »    PDF »
Murine Protein Serine/Threonine Kinase 38 Stimulates TGF-{beta} Signaling in a Kinase-dependent Manner via Direct Phosphorylation of Smad Proteins.
H.-A. Seong, H. Jung, and H. Ha (2010)
J. Biol. Chem. 285, 30959-30970
   Abstract »    Full Text »    PDF »
Resistance to transforming growth factor {beta}-mediated tumor suppression in melanoma: are multiple mechanisms in place?.
A. Lasfar and K. A. Cohen-Solal (2010)
Carcinogenesis 31, 1710-1717
   Abstract »    Full Text »    PDF »
Growth differentiation factor 9 signaling requires ERK1/2 activity in mouse granulosa and cumulus cells.
M. Sasseville, L. J. Ritter, T. M. Nguyen, F. Liu, D. G. Mottershead, D. L. Russell, and R. B. Gilchrist (2010)
J. Cell Sci. 123, 3166-3176
   Abstract »    Full Text »    PDF »
Sequential Activation of NFAT and c-Myc Transcription Factors Mediates the TGF-{beta} Switch from a Suppressor to a Promoter of Cancer Cell Proliferation.
G. Singh, S. K. Singh, A. Konig, K. Reutlinger, M. D. Nye, T. Adhikary, M. Eilers, T. M. Gress, M. E. Fernandez-Zapico, and V. Ellenrieder (2010)
J. Biol. Chem. 285, 27241-27250
   Abstract »    Full Text »    PDF »
Transcriptional regulation of the small GTPase RhoB gene by TGF{beta}-induced signaling pathways.
E. Vasilaki, E. Papadimitriou, V. Tajadura, A. J. Ridley, C. Stournaras, and D. Kardassis (2010)
FASEB J 24, 891-905
   Abstract »    Full Text »    PDF »
Smad3 Protein Levels Are Modulated by Ras Activity and during the Cell Cycle to Dictate Transforming Growth Factor-{beta} Responses.
A. C. Daly, P. Vizan, and C. S. Hill (2010)
J. Biol. Chem. 285, 6489-6497
   Abstract »    Full Text »    PDF »
Pin1 Promotes Transforming Growth Factor-{beta}-induced Migration and Invasion.
I. Matsuura, K.-N. Chiang, C.-Y. Lai, D. He, G. Wang, R. Ramkumar, T. Uchida, A. Ryo, K. Lu, and F. Liu (2010)
J. Biol. Chem. 285, 1754-1764
   Abstract »    Full Text »    PDF »
A Negative Feedback Control of Transforming Growth Factor-{beta} Signaling by Glycogen Synthase Kinase 3-mediated Smad3 Linker Phosphorylation at Ser-204.
C. Millet, M. Yamashita, M. Heller, L.-R. Yu, T. D. Veenstra, and Y. E. Zhang (2009)
J. Biol. Chem. 284, 19808-19816
   Abstract »    Full Text »    PDF »
Smad2 and Smad3 Phosphorylated at Both Linker and COOH-Terminal Regions Transmit Malignant TGF-{beta} Signal in Later Stages of Human Colorectal Cancer.
K. Matsuzaki, C. Kitano, M. Murata, G. Sekimoto, K. Yoshida, Y. Uemura, T. Seki, S. Taketani, J.-i. Fujisawa, and K. Okazaki (2009)
Cancer Res. 69, 5321-5330
   Abstract »    Full Text »    PDF »
Transforming Growth Factor {beta}1-mediated Activation of the Smooth Muscle {alpha}-Actin Gene in Human Pulmonary Myofibroblasts Is Inhibited by Tumor Necrosis Factor-{alpha} via Mitogen-activated Protein Kinase Kinase 1-dependent Induction of the Egr-1 Transcriptional Repressor.
X. Liu, R. J. Kelm Jr., and A. R. Strauch (2009)
Mol. Biol. Cell 20, 2174-2185
   Abstract »    Full Text »    PDF »
Transforming Growth Factor-{beta}-inducible Phosphorylation of Smad3.
G. Wang, I. Matsuura, D. He, and F. Liu (2009)
J. Biol. Chem. 284, 9663-9673
   Abstract »    Full Text »    PDF »
Pin1 Down-regulates Transforming Growth Factor-{beta} (TGF-{beta}) Signaling by Inducing Degradation of Smad Proteins.
A. Nakano, D. Koinuma, K. Miyazawa, T. Uchida, M. Saitoh, M. Kawabata, J.-i. Hanai, H. Akiyama, M. Abe, K. Miyazono, et al. (2009)
J. Biol. Chem. 284, 6109-6115
   Abstract »    Full Text »    PDF »
Role of Ras Signaling in the Induction of Snail by Transforming Growth Factor-{beta}.
K. Horiguchi, T. Shirakihara, A. Nakano, T. Imamura, K. Miyazono, and M. Saitoh (2009)
J. Biol. Chem. 284, 245-253
   Abstract »    Full Text »    PDF »
Transforming growth factor {beta}1 signalling, wound healing and repair: a multifunctional cytokine with clinical implications for wound repair, a delicate balance.
B R Klass, A O Grobbelaar, and K J Rolfe (2009)
Postgrad. Med. J. 85, 9-14
   Abstract »    Full Text »    PDF »
17-{beta}-Estradiol Inhibits Transforming Growth Factor-{beta} Signaling and Function in Breast Cancer Cells via Activation of Extracellular Signal-Regulated Kinase through the G Protein-Coupled Receptor 30.
B. Kleuser, D. Malek, R. Gust, H. H. Pertz, and H. Potteck (2008)
Mol. Pharmacol. 74, 1533-1543
   Abstract »    Full Text »    PDF »
Two highly related regulatory subunits of PP2A exert opposite effects on TGF-{beta}/Activin/Nodal signalling.
J. Batut, B. Schmierer, J. Cao, L. A. Raftery, C. S. Hill, and M. Howell (2008)
Development 135, 2927-2937
   Abstract »    Full Text »    PDF »
Transforming Growth Factor-{beta} (TGF-{beta}) and TGF-{beta}-Associated Kinase 1 Are Required for R-Ras-Mediated Transformation of Mammary Epithelial Cells.
M. Erdogan, A. Pozzi, N. Bhowmick, H. L. Moses, and R. Zent (2008)
Cancer Res. 68, 6224-6231
   Abstract »    Full Text »    PDF »
Oncogenic Ras and Transforming Growth Factor-{beta} Synergistically Regulate AU-Rich Element-Containing mRNAs during Epithelial to Mesenchymal Transition.
C. L. Kanies, J. J. Smith, C. Kis, C. Schmidt, S. Levy, K. S.A. Khabar, J. Morrow, N. Deane, D. A. Dixon, and R. D. Beauchamp (2008)
Mol. Cancer Res. 6, 1124-1136
   Abstract »    Full Text »    PDF »
Differential growth factor regulation of N-cadherin expression and motility in normal and malignant oral epithelium.
M. E. Diamond, L. Sun, A. J. Ottaviano, M. J. Joseph, and H. G. Munshi (2008)
J. Cell Sci. 121, 2197-2207
   Abstract »    Full Text »    PDF »
EGF antagonizes TGF-{beta}-induced tropoelastin expression in lung fibroblasts via stabilization of Smad corepressor TGIF.
S. Yang, M. A. Nugent, and M. P. Panchenko (2008)
Am J Physiol Lung Cell Mol Physiol 295, L143-L151
   Abstract »    Full Text »    PDF »
Inhibition of STAT3Tyr705 Phosphorylation by Smad4 Suppresses Transforming Growth Factor {beta}-Mediated Invasion and Metastasis in Pancreatic Cancer Cells.
S. Zhao, K. Venkatasubbarao, J. W. Lazor, J. Sperry, C. Jin, L. Cao, and J. W. Freeman (2008)
Cancer Res. 68, 4221-4228
   Abstract »    Full Text »    PDF »
Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells.
M. C. Cushing, P. D. Mariner, J.-T. Liao, E. A. Sims, and K. S. Anseth (2008)
FASEB J 22, 1769-1777
   Abstract »    Full Text »    PDF »
Myelodysplastic syndromes.
S. D. Nimer (2008)
Blood 111, 4841-4851
   Abstract »    Full Text »    PDF »
The Integrin-coupled Signaling Adaptor p130Cas Suppresses Smad3 Function in Transforming Growth Factor-{beta} Signaling.
W. Kim, Y. Seok Kang, J. Soo Kim, N.-Y. Shin, S. K. Hanks, and W. K. Song (2008)
Mol. Biol. Cell 19, 2135-2146
   Abstract »    Full Text »    PDF »
Smad4-dependent TGF-{beta} Signaling Suppresses RON Receptor Tyrosine Kinase-dependent Motility and Invasion of Pancreatic Cancer Cells.
S. Zhao, S. Ammanamanchi, M. Brattain, L. Cao, A. Thangasamy, J. Wang, and J. W. Freeman (2008)
J. Biol. Chem. 283, 11293-11301
   Abstract »    Full Text »    PDF »
Transforming growth factor-{beta} signaling and ubiquitinators in cancer.
E. Glasgow and L. Mishra (2008)
Endocr. Relat. Cancer 15, 59-72
   Abstract »    Full Text »    PDF »
Ephrin signaling establishes asymmetric cell fates in an endomesoderm lineage of the Ciona embryo.
W. Shi and M. Levine (2008)
Development 135, 931-940
   Abstract »    Full Text »    PDF »
Genome-wide Impact of the BRG1 SWI/SNF Chromatin Remodeler on the Transforming Growth Factor Transcriptional Program.
Q. Xi, W. He, X. H.-F. Zhang, H.-V. Le, and J. Massague (2008)
J. Biol. Chem. 283, 1146-1155
   Abstract »    Full Text »    PDF »
Activation of Bone Morphogenetic Protein Signaling by a Gemini Vitamin D3 Analogue Is Mediated by Ras/Protein Kinase C{alpha}.
H. J. Lee, Y. Ji, S. Paul, H. Maehr, M. Uskokovic, and N. Suh (2007)
Cancer Res. 67, 11840-11847
   Abstract »    Full Text »    PDF »
MAP-kinase activity necessary for TGFbeta1-stimulated mesangial cell type I collagen expression requires adhesion-dependent phosphorylation of FAK tyrosine 397.
T. Hayashida, M.-H. Wu, A. Pierce, A.-C. Poncelet, J. Varga, and H. W. Schnaper (2007)
J. Cell Sci. 120, 4230-4240
   Abstract »    Full Text »    PDF »
Modulation of tumor induction and progression of oncogenic K-ras-positive tumors in the presence of TGF- 1 haploinsufficiency.
J. Pandey, S. M. Umphress, Y. Kang, J. Angdisen, A. Naumova, K. L. Mercer, T. Jacks, and S. B. Jakowlew (2007)
Carcinogenesis 28, 2589-2596
   Abstract »    Full Text »    PDF »
ERK signaling is a central regulator for BMP-4 dependent capillary sprouting.
Q. Zhou, J. Heinke, A. Vargas, S. Winnik, T. Krauss, C. Bode, C. Patterson, and M. Moser (2007)
Cardiovasc Res 76, 390-399
   Abstract »    Full Text »    PDF »
Identification of a novel mitotic phosphorylation motif associated with protein localization to the mitotic apparatus.
F. Yang, D. G. Camp II, M. A. Gritsenko, Q. Luo, R. T. Kelly, T. R. W. Clauss, W. R. Brinkley, R. D. Smith, and D. L. Stenoien (2007)
J. Cell Sci. 120, 4060-4070
   Abstract »    Full Text »    PDF »
Neural induction requires continued suppression of both Smad1 and Smad2 signals during gastrulation.
C. Chang and R. M. Harland (2007)
Development 134, 3861-3872
   Abstract »    Full Text »    PDF »
RAS/ERK modulates TGF{beta}-regulated PTEN expression in human pancreatic adenocarcinoma cells.
J. Y.C. Chow, K. T. Quach, B. L. Cabrera, J. A. Cabral, S. E. Beck, and J. M. Carethers (2007)
Carcinogenesis 28, 2321-2327
   Abstract »    Full Text »    PDF »
Glutathione suppresses TGF-beta-induced PAI-1 expression by inhibiting p38 and JNK MAPK and the binding of AP-1, SP-1, and Smad to the PAI-1 promoter.
P. K. Vayalil, K. E. Iles, J. Choi, A.-K. Yi, E. M. Postlethwait, and R.-M. Liu (2007)
Am J Physiol Lung Cell Mol Physiol 293, L1281-L1292
   Abstract »    Full Text »    PDF »
Msk is required for nuclear import of TGF-{beta}/BMP-activated Smads.
L. Xu, X. Yao, X. Chen, P. Lu, B. Zhang, and Y. T. Ip (2007)
J. Cell Biol. 178, 981-994
   Abstract »    Full Text »    PDF »
TGF-{beta} activates Erk MAP kinase signalling through direct phosphorylation of ShcA.
M. K. Lee, C. Pardoux, M. C. Hall, P. S. Lee, D. Warburton, J. Qing, S. M. Smith, and R. Derynck (2007)
EMBO J. 26, 3957-3967
   Abstract »    Full Text »    PDF »
A discrete period of FGF-induced Erk1/2 signalling is required for vertebrate neural specification.
M. P. Stavridis, J. S. Lunn, B. J. Collins, and K. G. Storey (2007)
Development 134, 2889-2894
   Abstract »    Full Text »    PDF »
Differentiation of Human Circulating Fibrocytes as Mediated by Transforming Growth Factor-beta and Peroxisome Proliferator-activated Receptor {gamma}.
K. M. Hong, J. A. Belperio, M. P. Keane, M. D. Burdick, and R. M. Strieter (2007)
J. Biol. Chem. 282, 22910-22920
   Abstract »    Full Text »    PDF »
Biological Cross-talk between WNK1 and the Transforming Growth Factor beta-Smad Signaling Pathway.
B.-H. Lee, W. Chen, S. Stippec, and M. H. Cobb (2007)
J. Biol. Chem. 282, 17985-17996
   Abstract »    Full Text »    PDF »
Activation of Mps1 Promotes Transforming Growth Factor-beta-independent Smad Signaling.
S. Zhu, W. Wang, D. C. Clarke, and X. Liu (2007)
J. Biol. Chem. 282, 18327-18338
   Abstract »    Full Text »    PDF »
Reversible Smad-Dependent Signaling between Tumor Suppression and Oncogenesis.
G. Sekimoto, K. Matsuzaki, K. Yoshida, S. Mori, M. Murata, T. Seki, H. Matsui, J.-i. Fujisawa, and K. Okazaki (2007)
Cancer Res. 67, 5090-5096
   Abstract »    Full Text »    PDF »
Drosophila Nemo antagonizes BMP signaling by phosphorylation of Mad and inhibition of its nuclear accumulation.
Y. A. Zeng, M. Rahnama, S. Wang, W. Sosu-Sedzorme, and E. M. Verheyen (2007)
Development 134, 2061-2071
   Abstract »    Full Text »    PDF »
3-Phosphoinositide-dependent PDK1 Negatively Regulates Transforming Growth Factor-beta-induced Signaling in a Kinase-dependent Manner through Physical Interaction with Smad Proteins.
H.-A Seong, H. Jung, K.-T. Kim, and H. Ha (2007)
J. Biol. Chem. 282, 12272-12289
   Abstract »    Full Text »    PDF »
Transforming Growth Factor {beta} Signaling via Ras in Mesenchymal Cells Requires p21-Activated Kinase 2 for Extracellular Signal-Regulated Kinase-Dependent Transcriptional Responses.
K. Suzuki, M. C. Wilkes, N. Garamszegi, M. Edens, and E. B. Leof (2007)
Cancer Res. 67, 3673-3682
   Abstract »    Full Text »    PDF »
Notch signaling controls germline stem cell niche formation in the Drosophila ovary.
X. Song, G. B. Call, D. Kirilly, and T. Xie (2007)
Development 134, 1071-1080
   Abstract »    Full Text »    PDF »
Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development.
C. Ge, G. Xiao, D. Jiang, and R. T. Franceschi (2007)
J. Cell Biol. 176, 709-718
   Abstract »    Full Text »    PDF »
Emerging insights into Transforming growth factor {beta} Smad signal in hepatic fibrogenesis.
Y Inagaki and I Okazaki (2007)
Gut 56, 284-292
   Full Text »    PDF »
ANP signaling inhibits TGF-beta-induced Smad2 and Smad3 nuclear translocation and extracellular matrix expression in rat pulmonary arterial smooth muscle cells.
P. Li, S. Oparil, L. Novak, X. Cao, W. Shi, J. Lucas, and Y.-F. Chen (2007)
J Appl Physiol 102, 390-398
   Abstract »    Full Text »    PDF »
Dephosphorylation of the Linker Regions of Smad1 and Smad2/3 by Small C-terminal Domain Phosphatases Has Distinct Outcomes for Bone Morphogenetic Protein and Transforming Growth Factor-beta Pathways.
G. Sapkota, M. Knockaert, C. Alarcon, E. Montalvo, A. H. Brivanlou, and J. Massague (2006)
J. Biol. Chem. 281, 40412-40419
   Abstract »    Full Text »    PDF »
Small C-terminal Domain Phosphatases Dephosphorylate the Regulatory Linker Regions of Smad2 and Smad3 to Enhance Transforming Growth Factor-beta Signaling.
K. H. Wrighton, D. Willis, J. Long, F. Liu, X. Lin, and X.-H. Feng (2006)
J. Biol. Chem. 281, 38365-38375
   Abstract »    Full Text »    PDF »
Potentiation of Smad-mediated transcriptional activation by the RNA-binding protein RBPMS.
Y. Sun, L. Ding, H. Zhang, J. Han, X. Yang, J. Yan, Y. Zhu, J. Li, H. Song, and Q. Ye (2006)
Nucleic Acids Res. 34, 6314-6326
   Abstract »    Full Text »    PDF »
Fibulin-5 gene expression in human lung fibroblasts is regulated by TGF-beta and phosphatidylinositol 3-kinase activity.
P.-P. Kuang, M. Joyce-Brady, X.-H. Zhang, J.-C. Jean, and R. H. Goldstein (2006)
Am J Physiol Cell Physiol 291, C1412-C1421
   Abstract »    Full Text »    PDF »
The Tumor Suppressor KLF11 Mediates a Novel Mechanism in Transforming Growth Factor {beta}-Induced Growth Inhibition That Is Inactivated in Pancreatic Cancer.
A. Buck, M. Buchholz, M. Wagner, G. Adler, T. Gress, and V. Ellenrieder (2006)
Mol. Cancer Res. 4, 861-872
   Abstract »    Full Text »    PDF »
Escaping from the TGF{beta} anti-proliferative control.
J. Seoane (2006)
Carcinogenesis 27, 2148-2156
   Abstract »    Full Text »    PDF »
A FoxO-Smad synexpression group in human keratinocytes.
R. R. Gomis, C. Alarcon, W. He, Q. Wang, J. Seoane, A. Lash, and J. Massague (2006)
PNAS 103, 12747-12752
   Abstract »    Full Text »    PDF »
The Novel PIAS-like Protein hZimp10 Enhances Smad Transcriptional Activity.
X. Li, G. Thyssen, J. Beliakoff, and Z. Sun (2006)
J. Biol. Chem. 281, 23748-23756
   Abstract »    Full Text »    PDF »
Inhibition of Transforming Growth Factor-{beta} Signaling in Human Cancer: Targeting a Tumor Suppressor Network as a Therapeutic Strategy..
S. Biswas, T. L. Criswell, S. E. Wang, and C. L. Arteaga (2006)
Clin. Cancer Res. 12, 4142-4146
   Full Text »    PDF »
Cell Aggregation-induced FGF8 Elevation Is Essential for P19 Cell Neural Differentiation.
C. Wang, C. Xia, W. Bian, L. Liu, W. Lin, Y.-G. Chen, S.-L. Ang, and N. Jing (2006)
Mol. Biol. Cell 17, 3075-3084
   Abstract »    Full Text »    PDF »
The synthetic triterpenoid CDDO-imidazolide induces monocytic differentiation by activating the Smad and ERK signaling pathways in HL60 leukemia cells..
Y. Ji, H. J. Lee, C. Goodman, M. Uskokovic, K. Liby, M. Sporn, and N. Suh (2006)
Mol. Cancer Ther. 5, 1452-1458
   Abstract »    Full Text »    PDF »
Zebrafish endoderm formation is regulated by combinatorial Nodal, FGF and BMP signalling.
M. Poulain, M. Furthauer, B. Thisse, C. Thisse, and T. Lepage (2006)
Development 133, 2189-2200
   Abstract »    Full Text »    PDF »
Activin Signaling and Its Role in Regulation of Cell Proliferation, Apoptosis, and Carcinogenesis.
Y.-G. Chen, Q. Wang, S.-L. Lin, C. D. Chang, J. Chung, and S.-Y. Ying (2006)
Experimental Biology and Medicine 231, 534-544
   Abstract »    Full Text »    PDF »
Essential Role of Smad3 in Angiotensin II-Induced Vascular Fibrosis.
W. Wang, X. R. Huang, E. Canlas, K. Oka, L. D. Truong, C. Deng, N. A. Bhowmick, W. Ju, E. P. Bottinger, and H. Y. Lan (2006)
Circ. Res. 98, 1032-1039
   Abstract »    Full Text »    PDF »
The complex pattern of SMAD signaling in the cardiovascular system.
G. Euler-Taimor and J. Heger (2006)
Cardiovasc Res 69, 15-25
   Abstract »    Full Text »    PDF »
Smad transcription factors.
J. Massague, J. Seoane, and D. Wotton (2005)
Genes & Dev. 19, 2783-2810
   Abstract »    Full Text »    PDF »
Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells.
L. Vallier, M. Alexander, and R. A. Pedersen (2005)
J. Cell Sci. 118, 4495-4509
   Abstract »    Full Text »    PDF »
TGF-{beta}1 stimulates monocyte chemoattractant protein-1 expression in mesangial cells through a phosphodiesterase isoenzyme 4-dependent process.
J. Cheng, M. M. D. Encarnacion, G. M. Warner, C. E. Gray, K. A. Nath, and J. P. Grande (2005)
Am J Physiol Cell Physiol 289, C959-C970
   Abstract »    Full Text »    PDF »
YB-1 Coordinates Vascular Smooth Muscle {alpha}-Actin Gene Activation by Transforming Growth Factor {beta}1 and Thrombin during Differentiation of Human Pulmonary Myofibroblasts.
A. Zhang, X. Liu, J. G. Cogan, M. D. Fuerst, J. A. Polikandriotis, R. J. Kelm Jr., and A. R. Strauch (2005)
Mol. Biol. Cell 16, 4931-4940
   Abstract »    Full Text »    PDF »
The Endogenous Ratio of Smad2 and Smad3 Influences the Cytostatic Function of Smad3.
S. G. Kim, H.-A. Kim, H.-S. Jong, J.-H. Park, N. K. Kim, S. H. Hong, T.-Y. Kim, and Y.-J. Bang (2005)
Mol. Biol. Cell 16, 4672-4683
   Abstract »    Full Text »    PDF »
The G protein-coupled receptor kinase-2 is a TGF{beta}-inducible antagonist of TGF{beta} signal transduction.
J. Ho, E. Cocolakis, V. M. Dumas, B. I. Posner, S. A. Laporte, and J.-J. Lebrun (2005)
EMBO J. 24, 3247-3258
   Abstract »    Full Text »    PDF »
Pathway- and Expression Level-Dependent Effects of Oncogenic N-Ras: p27Kip1 Mislocalization by the Ral-GEF Pathway and Erk-Mediated Interference with Smad Signaling.
S. Kfir, M. Ehrlich, A. Goldshmid, X. Liu, Y. Kloog, and Y. I. Henis (2005)
Mol. Cell. Biol. 25, 8239-8250
   Abstract »    Full Text »    PDF »
Asthmatic changes in mice lacking T-bet are mediated by IL-13.
S. Finotto, M. Hausding, A. Doganci, J. H. Maxeiner, H. A. Lehr, C. Luft, P. R. Galle, and L. H. Glimcher (2005)
Int. Immunol. 17, 993-1007
   Abstract »    Full Text »    PDF »
Inhibition of the Transforming Growth Factor {beta} (TGF{beta}) Pathway by Interleukin-1{beta} Is Mediated through TGF{beta}-activated Kinase 1 Phosphorylation of SMAD3.
G. F.J.D. Benus, A. T.J. Wierenga, D. J.J. de Gorter, J. J. Schuringa, A. M. van Bennekum, L. Drenth-Diephuis, E. Vellenga, and B. J.L. Eggen (2005)
Mol. Biol. Cell 16, 3501-3510
   Abstract »    Full Text »    PDF »
Characterization of a novel transcriptionally active domain in the transforming growth factor {beta}-regulated Smad3 protein.
V. Prokova, S. Mavridou, P. Papakosta, and D. Kardassis (2005)
Nucleic Acids Res. 33, 3708-3721
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882