Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Genes & Dev. 16 (20): 2672-2683

Copyright © 2002 by Cold Spring Harbor Laboratory Press.

Vol. 16, No. 20, pp. 2672-2683, October 15, 2002

A cellular memory module conveys epigenetic inheritance of hedgehog expression during Drosophila wing imaginal disc development

Cédric Maurange, and Renato Paro1

Zentrum für Molekulare Biologie Heidelberg (ZMBH), University of Heidelberg, D-69120 Heidelberg, Germany

In Drosophila, the Trithorax-group (trxG) and Polycomb-group (PcG) proteins interact with chromosomal elements, termed Cellular Memory Modules (CMMs). By modifying chromatin, this ensures a stable heritable maintenance of the transcriptional state of developmental regulators, like the homeotic genes, that is defined embryonically. We asked whether such CMMs could also control expression of genes involved in patterning imaginal discs during larval development. Our results demonstrate that expression of the hedgehog gene, once activated, is maintained by a CMM. In addition, our experiments indicate that the switching of such CMMs to an active state during larval stages, in contrast to embryonic stages, may require specific trans-activators. Our results suggest that the patterning of cells in particular developmental fields in the imaginal discs does not only rely on external cues from morphogens, but also depends on the previous history of the cells, as the control by CMMs ensures a preformatted gene expression pattern.

[Key Words: cellular memory; Hedgehog; Polycomb; Trithorax; Drosophila]

1 Corresponding author.

GENES & DEVELOPMENT 16:2672-2683 © 2002 by Cold Spring Harbor Laboratory Press  ISSN 0890-9369/02 $5.00

Distinct Chromatin Configurations Regulate the Initiation and the Maintenance of hGH Gene Expression.
Y. Ho, B. M. Shewchuk, S. A. Liebhaber, and N. E. Cooke (2013)
Mol. Cell. Biol. 33, 1723-1734
   Abstract »    Full Text »    PDF »
Quantitative in vivo analysis of chromatin binding of Polycomb and Trithorax group proteins reveals retention of ASH1 on mitotic chromatin.
P. A. Steffen, J. P. Fonseca, C. Ganger, E. Dworschak, T. Kockmann, C. Beisel, and L. Ringrose (2013)
Nucleic Acids Res. 41, 5235-5250
   Abstract »    Full Text »    PDF »
The interplay between morphogens and tissue growth.
A. Dekanty and M. Milan (2011)
EMBO Rep. 12, 1003-1010
   Abstract »    Full Text »    PDF »
Enhancer-PRE communication contributes to the expansion of gene expression domains in proliferating primordia.
L. Perez, L. Barrio, D. Cano, U.-M. Fiuza, M. Muzzopappa, and M. Milan (2011)
Development 138, 3125-3134
   Abstract »    Full Text »    PDF »
Transgenerational Inheritance and Resetting of Stress-Induced Loss of Epigenetic Gene Silencing in Arabidopsis.
C. Lang-Mladek, O. Popova, K. Kiok, M. Berlinger, B. Rakic, W. Aufsatz, C. Jonak, M.-T. Hauser, and C. Luschnig (2010)
Mol Plant 3, 594-602
   Abstract »    Full Text »    PDF »
Epigenetic propagation of CD4 expression is established by the Cd4 proximal enhancer in helper T cells.
M. M. W. Chong, N. Simpson, M. Ciofani, G. Chen, A. Collins, and D. R. Littman (2010)
Genes & Dev. 24, 659-669
   Abstract »    Full Text »    PDF »
The Chromatin-Remodeling Protein Osa Interacts With CyclinE in Drosophila Eye Imaginal Discs.
J. Baig, F. Chanut, T. B. Kornberg, and A. Klebes (2010)
Genetics 184, 731-744
   Abstract »    Full Text »    PDF »
Epigenetic reprogramming during wound healing: loss of polycomb-mediated silencing may enable upregulation of repair genes.
T. Shaw and P. Martin (2009)
EMBO Rep. 10, 881-886
   Abstract »    Full Text »    PDF »
A Multifactorial Signature of DNA Sequence and Polycomb Binding Predicts Aberrant CpG Island Methylation.
M. T. McCabe, E. K. Lee, and P. M. Vertino (2009)
Cancer Res. 69, 282-291
   Abstract »    Full Text »    PDF »
Long-Range Communication between the Silencers of HMR.
L. Valenzuela, N. Dhillon, R. N. Dubey, M. R. Gartenberg, and R. T. Kamakaka (2008)
Mol. Cell. Biol. 28, 1924-1935
   Abstract »    Full Text »    PDF »
The role of Polycomb-group response elements in regulation of engrailed transcription in Drosophila.
S. K. DeVido, D. Kwon, J. L. Brown, and J. A. Kassis (2008)
Development 135, 669-676
   Abstract »    Full Text »    PDF »
Polycomb/Trithorax response elements and epigenetic memory of cell identity.
L. Ringrose and R. Paro (2007)
Development 134, 223-232
   Abstract »    Full Text »    PDF »
Mouse Polycomb M33 is required for splenic vascular and adrenal gland formation through regulating Ad4BP/SF1 expression.
Y. Katoh-Fukui, A. Owaki, Y. Toyama, M. Kusaka, Y. Shinohara, M. Maekawa, K. Toshimori, and K.-i. Morohashi (2005)
Blood 106, 1612-1620
   Abstract »    Full Text »    PDF »
Subunit Contributions to Histone Methyltransferase Activities of Fly and Worm Polycomb Group Complexes.
C. S. Ketel, E. F. Andersen, M. L. Vargas, J. Suh, S. Strome, and J. A. Simon (2005)
Mol. Cell. Biol. 25, 6857-6868
   Abstract »    Full Text »    PDF »
Intergenic transcription through a Polycomb group response element counteracts silencing.
S. Schmitt, M. Prestel, and R. Paro (2005)
Genes & Dev. 19, 697-708
   Abstract »    Full Text »    PDF »
Activation and repression activities of ash2 in Drosophila wing imaginal discs.
M. Angulo, M. Corominas, and F. Serras (2004)
Development 131, 4943-4953
   Abstract »    Full Text »    PDF »
Chick Pcl2 regulates the left-right asymmetry by repressing Shh expression in Hensen's node.
S. Wang, X. Yu, T. Zhang, X. Zhang, Z. Zhang, and Y. Chen (2004)
Development 131, 4381-4391
   Abstract »    Full Text »    PDF »
Requirement for Sex Comb on Midleg Protein Interactions in Drosophila Polycomb Group Repression.
A. J. Peterson, D. R. Mallin, N. J. Francis, C. S. Ketel, J. Stamm, R. K. Voeller, R. E. Kingston, and J. A. Simon (2004)
Genetics 167, 1225-1239
   Abstract »    Full Text »    PDF »
polyhomeotic is required for somatic cell proliferation and differentiation during ovarian follicle formation in Drosophila.
K. Narbonne, F. Besse, J. Brissard-Zahraoui, A.-M. Pret, and D. Busson (2004)
Development 131, 1389-1400
   Abstract »    Full Text »    PDF »
Chromatin inheritance upon Zeste-mediated Brahma recruitment at a minimal cellular memory module.
J. Dejardin and G. Cavalli (2004)
EMBO J. 23, 857-868
   Abstract »    Full Text »    PDF »
Polycomb Silencing Mechanisms in Drosophila.
Cold Spring Harb Symp Quant Biol 69, 301-308
   Abstract »    PDF »
Inheritance of Polycomb-dependent chromosomal interactions in Drosophila.
F. Bantignies, C. Grimaud, S. Lavrov, M. Gabut, and G. Cavalli (2003)
Genes & Dev. 17, 2406-2420
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882