Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Genes & Dev. 16 (9): 1055-1059

Copyright © 2002 by Cold Spring Harbor Laboratory Press.

Vol. 16, No. 9, pp. 1055-1059, May 1, 2002

Wingful, an extracellular feedback inhibitor of Wingless

Offer Gerlitz, and Konrad Basler1

Institut für Molekularbiologie, Universität Zürich, CH-8057 Zürich, Switzerland

Secreted peptide signals control many fundamental processes during animal development. Proper responses to these signals require cognate inducible feedback antagonists. Here we report the identification of a novel Drosophila Wingless (Wg) target gene, wingful (wf), and show that it encodes a potent extracellular feedback inhibitor of Wg. In contrast to the cytoplasmic protein Naked cuticle (Nkd), the only known Wg feedback antagonist, Wf functions during larval stages, when Nkd function is dispensable. We propose that Wf may provide feedback control for the long-range morphogen activities of Wg.

[Key Words: Negative feedback control; Wingless signaling; pattern formation]

1 Corresponding author.

GENES & DEVELOPMENT 16:1055-1059 © 2002 by Cold Spring Harbor Laboratory Press  ISSN 0890-9369/02 $5.00

pbx is required for pole and eye regeneration in planarians.
C.-C. G. Chen, I. E. Wang, and P. W. Reddien (2013)
Development 140, 719-729
   Abstract »    Full Text »    PDF »
Notum Homolog Plays a Novel Role in Primary Motor Innervation.
J. A. Cantu, G. P. Flowers, and J. Topczewski (2013)
J. Neurosci. 33, 2177-2187
   Abstract »    Full Text »    PDF »
Bridging Decapentaplegic and Wingless signaling in Drosophila wings through repression of naked cuticle by Brinker.
L. Yang, F. Meng, D. Ma, W. Xie, and M. Fang (2013)
Development 140, 413-422
   Abstract »    Full Text »    PDF »
Dally and Notum regulate the switch between low and high level Hedgehog pathway signalling.
K. L. Ayers, R. Mteirek, A. Cervantes, L. Lavenant-Staccini, P. P. Therond, and A. Gallet (2012)
Development 139, 3168-3179
   Abstract »    Full Text »    PDF »
A zebrafish Notum homolog specifically blocks the Wnt/{beta}-catenin signaling pathway.
G. P. Flowers, J. M. Topczewska, and J. Topczewski (2012)
Development 139, 2416-2425
   Abstract »    Full Text »    PDF »
Polarized notum Activation at Wounds Inhibits Wnt Function to Promote Planarian Head Regeneration.
C. P. Petersen and P. W. Reddien (2011)
Science 332, 852-855
   Abstract »    Full Text »    PDF »
Coop functions as a corepressor of Pangolin and antagonizes Wingless signaling.
H. Song, S. Goetze, J. Bischof, C. Spichiger-Haeusermann, M. Kuster, E. Brunner, and K. Basler (2010)
Genes & Dev. 24, 881-886
   Abstract »    Full Text »    PDF »
The extracellular regulation of bone morphogenetic protein signaling.
D. Umulis, M. B. O'Connor, and S. S. Blair (2009)
Development 136, 3715-3728
   Abstract »    Full Text »    PDF »
Shaping Morphogen Gradients by Proteoglycans.
D. Yan and X. Lin (2009)
Cold Spring Harb Perspect Biol 1, a002493
   Abstract »    Full Text »    PDF »
The co-regulator dNAB interacts with Brinker to eliminate cells with reduced Dpp signaling.
O. Ziv, Y. Suissa, H. Neuman, T. Dinur, P. Geuking, C. Rhiner, M. Portela, F. Lolo, E. Moreno, and O. Gerlitz (2009)
Development 136, 1137-1145
   Abstract »    Full Text »    PDF »
SoxF is part of a novel negative-feedback loop in the wingless pathway that controls proliferation in the Drosophila wing disc.
M.-L. Dichtel-Danjoy, J. Caldeira, and F. Casares (2009)
Development 136, 761-769
   Abstract »    Full Text »    PDF »
Wingless Signaling Induces Widespread Chromatin Remodeling of Target Loci.
D. S. Parker, Y. Y. Ni, J. L. Chang, J. Li, and K. M. Cadigan (2008)
Mol. Cell. Biol. 28, 1815-1828
   Abstract »    Full Text »    PDF »
Functional screening identifies miR-315 as a potent activator of Wingless signaling.
S. J. Silver, J. W. Hagen, K. Okamura, N. Perrimon, and E. C. Lai (2007)
PNAS 104, 18151-18156
   Abstract »    Full Text »    PDF »
Viable Mice with Compound Mutations in the Wnt/Dvl Pathway Antagonists nkd1 and nkd2.
S. Zhang, T. Cagatay, M. Amanai, M. Zhang, J. Kline, D. H. Castrillon, R. Ashfaq, O. K. Oz, and K. A. Wharton Jr. (2007)
Mol. Cell. Biol. 27, 4454-4464
   Abstract »    Full Text »    PDF »
CBP/p300 are bimodal regulators of Wnt signaling.
J. Li, C. Sutter, D. S. Parker, T. Blauwkamp, M. Fang, and K. M. Cadigan (2007)
EMBO J. 26, 2284-2294
   Abstract »    Full Text »    PDF »
Organization of the peripheral fly eye: the roles of Snail family transcription factors in peripheral retinal apoptosis.
H.-Y. Lim and A. Tomlinson (2006)
Development 133, 3529-3537
   Abstract »    Full Text »    PDF »
A Screen for Genes Regulating the Wingless Gradient in Drosophila Embryos.
S. C. Desbordes, D. Chandraratna, and B. Sanson (2005)
Genetics 170, 749-766
   Abstract »    Full Text »    PDF »
Glypicans shunt the Wingless signal between local signalling and further transport.
X. Franch-Marro, O. Marchand, E. Piddini, S. Ricardo, C. Alexandre, and J.-P. Vincent (2005)
Development 132, 659-666
   Abstract »    Full Text »    PDF »
Drosophila glypicans Dally and Dally-like shape the extracellular Wingless morphogen gradient in the wing disc.
C. Han, D. Yan, T. Y. Belenkaya, and X. Lin (2005)
Development 132, 667-679
   Abstract »    Full Text »    PDF »
Functions of heparan sulfate proteoglycans in cell signaling during development.
X. Lin (2004)
Development 131, 6009-6021
   Abstract »    Full Text »    PDF »
Incredible journey: how do developmental signals travel through tissue?.
A. J. Zhu and M. P. Scott (2004)
Genes & Dev. 18, 2985-2997
   Abstract »    Full Text »    PDF »
Nemo is an inducible antagonist of Wingless signaling during Drosophila wing development.
Y. A. Zeng and E. M. Verheyen (2004)
Development 131, 2911-2920
   Abstract »    Full Text »    PDF »
Wingless, Hedgehog and Heparan Sulfate Proteoglycans.
N. Perrimon, U. Hacker, B. Sanson, and T. Tabata (2004)
Development 131, 2509-2513
   Full Text »    PDF »
Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation.
C. Han, T. Y. Belenkaya, M. Khodoun, M. Tauchi, X. Lin, and X. Lin (2004)
Development 131, 1563-1575
   Abstract »    Full Text »    PDF »
Morphogens, their identification and regulation.
T. Tabata and Y. Takei (2004)
Development 131, 703-712
   Abstract »    Full Text »    PDF »
Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans.
Y. Takei, Y. Ozawa, M. Sato, A. Watanabe, and T. Tabata (2004)
Development 131, 73-82
   Abstract »    Full Text »    PDF »
The glypican Dally-like is required for Hedgehog signalling in the embryonic epidermis of Drosophila.
S. C. Desbordes and B. Sanson (2003)
Development 130, 6245-6255
   Abstract »    Full Text »    PDF »
Wnts and Hedgehogs: lipid-modified proteins and similarities in signaling mechanisms at the cell surface.
R. Nusse (2003)
Development 130, 5297-5305
   Abstract »    Full Text »    PDF »
Dally regulates Dpp morphogen gradient formation in the Drosophila wing.
M. Fujise, S. Takeo, K. Kamimura, T. Matsuo, T. Aigaki, S. Izumi, and H. Nakato (2003)
Development 130, 1515-1522
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882