Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Genes & Dev. 17 (10): 1225-1239

Copyright © 2003 by Cold Spring Harbor Laboratory Press.

Vol. 17, No. 10, pp. 1225-1239, May 15, 2003

RESEARCH PAPER
A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C. elegans

Dayalan G. Srinivasan,1 Ridgely M. Fisk,1 Huihong Xu, and Sander van den Heuvel2

Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts 02129, USA

The Caenorhabditis elegans coiled-coil protein LIN-5 mediates several processes in cell division that depend on spindle forces, including alignment and segregation of chromosomes and positioning of the spindle. Here, we describe two closely related proteins, GPR-1 and GPR-2 (G protein regulator), which associate with LIN-5 in vivo and in vitro and depend on LIN-5 for localization to the spindle and cell cortex. GPR-1/GPR-2 contain a GoLoco/GPR motif that mediates interaction with GDP-bound Galpha i/o. Inactivation of lin-5, gpr-1/gpr-2, or the Galpha i/o genes goa-1 and gpa-16 all cause highly similar chromosome segregation and spindle positioning defects, indicating a positive role for the LIN-5 and GPR proteins in G protein signaling. The lin-5 and gpr-1/gpr-2 genes appear to act downstream of the par polarity genes in the one- and two-cell stages and downstream of the tyrosine kinase-related genes mes-1 and src-1 at the four-cell stage. Together, these results indicate that GPR-1/GPR-2 in association with LIN-5 activate G protein signaling to affect spindle force. Polarity determinants may regulate LIN-5/GPR/Galpha locally to create the asymmetric forces that drive spindle movement. Results in C. elegans and other species are consistent with a novel model for receptor-independent activation of Galpha i/o signaling.

[Keywords: LIN-5; GoLoco motif; G protein; chromosome segregation; spindle position]


1 These authors contributed equally to this work.

2 Corresponding author.


© 2003 by Cold Spring Harbor Laboratory Press  ISSN 0890-9369/03 $5.00


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Activators of G Protein Signaling Exhibit Broad Functionality and Define a Distinct Core Signaling Triad.
J. B. Blumer and S. M. Lanier (2014)
Mol. Pharmacol. 85, 388-396
   Abstract »    Full Text »    PDF »
Epithelial polarity and spindle orientation: intersecting pathways.
D. T. Bergstralh, T. Haack, and D. St Johnston (2013)
Phil Trans R Soc B 368, 20130291
   Abstract »    Full Text »    PDF »
F-actin asymmetry and the endoplasmic reticulum-associated TCC-1 protein contribute to stereotypic spindle movements in the Caenorhabditis elegans embryo.
C. W. H. Berends, J. Munoz, V. Portegijs, R. Schmidt, I. Grigoriev, M. Boxem, A. Akhmanova, A. J. R. Heck, and S. van den Heuvel (2013)
Mol. Biol. Cell 24, 2201-2215
   Abstract »    Full Text »    PDF »
Evidence for dynein and astral microtubule-mediated cortical release and transport of G{alpha}i/LGN/NuMA complex in mitotic cells.
Z. Zheng, Q. Wan, J. Liu, H. Zhu, X. Chu, and Q. Du (2013)
Mol. Biol. Cell 24, 901-913
   Abstract »    Full Text »    PDF »
Wnt and CDK-1 regulate cortical release of WRM-1/{beta}-catenin to control cell division orientation in early Caenorhabditis elegans embryos.
S. Kim, T. Ishidate, R. Sharma, M. C. Soto, D. Conte Jr., C. C. Mello, and M. Shirayama (2013)
PNAS 110, E918-E927
   Abstract »    Full Text »    PDF »
Mitotic spindle (DIS)orientation and DISease: Cause or consequence?.
A. Noatynska, M. Gotta, and P. Meraldi (2012)
J. Cell Biol. 199, 1025-1035
   Abstract »    Full Text »    PDF »
Crystal Structures of the Scaffolding Protein LGN Reveal the General Mechanism by Which GoLoco Binding Motifs Inhibit the Release of GDP from G{alpha}i.
M. Jia, J. Li, J. Zhu, W. Wen, M. Zhang, and W. Wang (2012)
J. Biol. Chem. 287, 36766-36776
   Abstract »    Full Text »    PDF »
Cortical dynein is critical for proper spindle positioning in human cells.
S. Kotak, C. Busso, and P. Gonczy (2012)
J. Cell Biol. 199, 97-110
   Abstract »    Full Text »    PDF »
Dynamic localization of C. elegans TPR-GoLoco proteins mediates mitotic spindle orientation by extrinsic signaling.
A. D. Werts, M. Roh-Johnson, and B. Goldstein (2011)
Development 138, 4411-4422
   Abstract »    Full Text »    PDF »
Resistance to Inhibitors of Cholinesterase-8A (Ric-8A) Is Critical for Growth Factor Receptor-induced Actin Cytoskeletal Reorganization.
L. Wang, D. Guo, B. Xing, J. J. Zhang, H.-B. Shu, L. Guo, and X.-Y. Huang (2011)
J. Biol. Chem. 286, 31055-31061
   Abstract »    Full Text »    PDF »
AGS-3 Alters Caenorhabditis elegans Behavior after Food Deprivation via RIC-8 Activation of the Neural G Protein G{alpha}o.
C. Hofler and M. R. Koelle (2011)
J. Neurosci. 31, 11553-11562
   Abstract »    Full Text »    PDF »
Visualization of dynein-dependent microtubule gliding at the cell cortex: implications for spindle positioning.
E. M. Gusnowski and M. Srayko (2011)
J. Cell Biol. 194, 377-386
   Abstract »    Full Text »    PDF »
Polarity mediates asymmetric trafficking of the G{beta} heterotrimeric G-protein subunit GPB-1 in C. elegans embryos.
K. Thyagarajan, K. Afshar, and P. Gonczy (2011)
Development 138, 2773-2782
   Abstract »    Full Text »    PDF »
Elaborating polarity: PAR proteins and the cytoskeleton.
J. Nance and J. A. Zallen (2011)
Development 138, 799-809
   Abstract »    Full Text »    PDF »
Robust control of mitotic spindle orientation in the developing epidermis.
N. D. Poulson and T. Lechler (2010)
J. Cell Biol. 191, 915-922
   Abstract »    Full Text »    PDF »
Cortical domain correction repositions the polarity boundary to match the cytokinesis furrow in C. elegans embryos.
C. Schenk, H. Bringmann, A. A. Hyman, and C. R. Cowan (2010)
Development 137, 1743-1753
   Abstract »    Full Text »    PDF »
LET-99 inhibits lateral posterior pulling forces during asymmetric spindle elongation in C. elegans embryos.
L. E. Krueger, J.-C. Wu, M.-F. B. Tsou, and L. S. Rose (2010)
J. Cell Biol. 189, 481-495
   Abstract »    Full Text »    PDF »
Regulation of cortical contractility and spindle positioning by the protein phosphatase 6 PPH-6 in one-cell stage C. elegans embryos.
K. Afshar, M. E. Werner, Y. C. Tse, M. Glotzer, and P. Gonczy (2010)
Development 137, 237-247
   Abstract »    Full Text »    PDF »
Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer.
R. A. Neumuller and J. A. Knoblich (2009)
Genes & Dev. 23, 2675-2699
   Abstract »    Full Text »    PDF »
A Role for Dynein in the Inhibition of Germ Cell Proliferative Fate.
M. Dorsett and T. Schedl (2009)
Mol. Cell. Biol. 29, 6128-6139
   Abstract »    Full Text »    PDF »
Structural Basis for Self-Renewal of Neural Progenitors in Cortical Neurogenesis.
G. Shioi, D. Konno, A. Shitamukai, and F. Matsuzaki (2009)
Cereb Cortex 19, i55-i61
   Abstract »    Full Text »    PDF »
A Point Mutation to G{alpha}i Selectively Blocks GoLoco Motif Binding: DIRECT EVIDENCE FOR G{alpha}{middle dot}GoLoco COMPLEXES IN MITOTIC SPINDLE DYNAMICS.
F. S. Willard, Z. Zheng, J. Guo, G. J. Digby, A. J. Kimple, J. M. Conley, C. A. Johnston, D. Bosch, M. D. Willard, V. J. Watts, et al. (2008)
J. Biol. Chem. 283, 36698-36710
   Abstract »    Full Text »    PDF »
Structural Determinants Underlying the Temperature-sensitive Nature of a G{alpha} Mutant in Asymmetric Cell Division of Caenorhabditis elegans.
C. A. Johnston, K. Afshar, J. T. Snyder, G. G. Tall, P. Gonczy, D. P. Siderovski, and F. S. Willard (2008)
J. Biol. Chem. 283, 21550-21558
   Abstract »    Full Text »    PDF »
Proteomics in Caenorhabditis elegans.
A. Audhya and A. Desai (2008)
Briefings in Functional Genomics 7, 205-210
   Abstract »    Full Text »    PDF »
PAR-3 and PAR-1 Inhibit LET-99 Localization to Generate a Cortical Band Important for Spindle Positioning in Caenorhabditis elegans Embryos.
J.-C. Wu and L. S. Rose (2007)
Mol. Biol. Cell 18, 4470-4482
   Abstract »    Full Text »    PDF »
G{alpha}i generates multiple Pins activation states to link cortical polarity and spindle orientation in Drosophila neuroblasts.
R. W. Nipper, K. H. Siller, N. R. Smith, C. Q. Doe, and K. E. Prehoda (2007)
PNAS 104, 14306-14311
   Abstract »    Full Text »    PDF »
Resistance to inhibitors of cholinesterase 8A catalyzes release of G{alpha}i-GTP and nuclear mitotic apparatus protein (NuMA) from NuMA/LGN/G{alpha}i-GDP complexes.
G. G. Tall and A. G. Gilman (2005)
PNAS 102, 16584-16589
   Abstract »    Full Text »    PDF »
Cortical localization of the G{alpha} protein GPA-16 requires RIC-8 function during C. elegans asymmetric cell division.
K. Afshar, F. S. Willard, K. Colombo, D. P. Siderovski, and P. Gonczy (2005)
Development 132, 4449-4459
   Abstract »    Full Text »    PDF »
Locomotion defects, together with Pins, regulates heterotrimeric G-protein signaling during Drosophila neuroblast asymmetric divisions.
F. Yu, H. Wang, H. Qian, R. Kaushik, M. Bownes, X. Yang, and W. Chia (2005)
Genes & Dev. 19, 1341-1353
   Abstract »    Full Text »    PDF »
The RGS14 GoLoco Domain Discriminates among G{alpha}i Isoforms.
V. Mittal and M. E. Linder (2004)
J. Biol. Chem. 279, 46772-46778
   Abstract »    Full Text »    PDF »
Identification and Characterization of AGS4: A PROTEIN CONTAINING THREE G-PROTEIN REGULATORY MOTIFS THAT REGULATE THE ACTIVATION STATE OF Gi{alpha}.
X. Cao, M. J. Cismowski, M. Sato, J. B. Blumer, and S. M. Lanier (2004)
J. Biol. Chem. 279, 27567-27574
   Abstract »    Full Text »    PDF »
AGS3 and Signal Integration by G{alpha}s- and G{alpha}i-coupled Receptors: AGS3 BLOCKS THE SENSITIZATION OF ADENYLYL CYCLASE FOLLOWING PROLONGED STIMULATION OF A G{alpha}i-COUPLED RECEPTOR BY INFLUENCING PROCESSING OF G{alpha}i.
M. Sato, T. W. Gettys, and S. M. Lanier (2004)
J. Biol. Chem. 279, 13375-13382
   Abstract »    Full Text »    PDF »
Differential functions of G protein and Baz-aPKC signaling pathways in Drosophila neuroblast asymmetric division.
Y. Izumi, N. Ohta, A. Itoh-Furuya, N. Fuse, and F. Matsuzaki (2004)
J. Cell Biol. 164, 729-738
   Abstract »    Full Text »    PDF »
LET-99 opposes G{alpha}/GPR signaling to generate asymmetry for spindle positioning in response to PAR and MES-1/SRC-1 signaling.
M.-F. B. Tsou, A. Hayashi, and L. S. Rose (2003)
Development 130, 5717-5730
   Abstract »    Full Text »    PDF »
Embryonic handedness choice in C. elegans involves the G{alpha} protein GPA-16.
D. C. Bergmann, M. Lee, B. Robertson, M.-F. B. Tsou, L. S. Rose, and W. B. Wood (2003)
Development 130, 5731-5740
   Abstract »    Full Text »    PDF »
Evidence Mounts for Receptor-Independent Activation of Heterotrimeric G Proteins Normally in Vivo: Positioning of the Mitotic Spindle in C. Elegans.
D. R. Manning (2003)
Sci. STKE 2003, pe35
   Abstract »    Full Text »    PDF »
The Distribution of Active Force Generators Controls Mitotic Spindle Position.
S. W. Grill, J. Howard, E. Schaffer, E. H. K. Stelzer, and A. A. Hyman (2003)
Science 301, 518-521
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882