Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Genes & Dev. 18 (14): 1695-1708

Copyright © 2004 by Cold Spring Harbor Laboratory Press.


RESEARCH PAPER

A signaling mucin at the head of the Cdc42- and MAPK-dependent filamentous growth pathway in yeast

Paul J. Cullen1,4, Walid Sabbagh, Jr.2, Ellie Graham1, Molly M. Irick1, Erin K. van Olden1, Cassandra Neal3, Jeffrey Delrow3, Lee Bardwell2, and George F. Sprague, Jr.1,5

1 Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA; 2 Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, USA; 3 Genomics Resource, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA

Abstract: Signaling molecules such as Cdc42 and mitogen-activated protein kinases (MAPKs) can function in multiple pathways in the same cell. Here, we propose one mechanism by which such factors may be directed to function in a particular pathway such that a specific response is elicited. Using genomic approaches, we identify a new component of the Cdc42- and MAPK-dependent signaling pathway that regulates filamentous growth (FG) in yeast. This factor, called Msb2, is a FG-pathway-specific factor that promotes differential activation of the MAPK for the FG pathway, Kss1. Msb2 is localized to polarized sites on the cell surface and interacts with Cdc42 and with the osmosensor for the high osmolarity glycerol response (HOG) pathway, Sho1. Msb2 is glycosylated and is a member of the mucin family, proteins that in mammalian cells promote disease resistance and contribute to metastasis in cancer cells. Remarkably, loss of the mucin domain of Msb2 causes hyperactivity of the FG pathway, demonstrating an inhibitory role for mucin domains in MAPK pathway activation. Taken together, our data suggest that Msb2 is a signaling mucin that interacts with general components, such as Cdc42 and Sho1, to promote their function in the FG pathway.

Key Words: Morphogenesis • cell polarity • signal transduction • pseudohyphal growth • specificity

Received for publication December 16, 2003. Accepted for publication May 19, 2004.


Supplemental material is available at http://www.genesdev.org.

Article and publication are at http://www.genesdev.org/cgi/doi/10.1101/gad.1178604.

4 Present address: Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA.

5 Corresponding author.
E-MAIL gsprague{at}molbio.uoregon.edu; FAX (541) 346-5891.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
A framework for mapping, visualisation and automatic model creation of signal-transduction networks.
C.-F. Tiger, F. Krause, G. Cedersund, R. Palmer, E. Klipp, S. Hohmann, H. Kitano, and M. Krantz (2014)
Mol Syst Biol 8, 578
   Abstract »    Full Text »    PDF »
Yeast Osmosensors Hkr1 and Msb2 Activate the Hog1 MAPK Cascade by Different Mechanisms.
K. Tanaka, K. Tatebayashi, A. Nishimura, K. Yamamoto, H.-Y. Yang, and H. Saito (2014)
Science Signaling 7, ra21
   Abstract »    Full Text »    PDF »
Comparative Transcriptomics of Infectious Spores from the Fungal Pathogen Histoplasma capsulatum Reveals a Core Set of Transcripts That Specify Infectious and Pathogenic States.
D. O. Inglis, M. Voorhies, D. R. Hocking Murray, and A. Sil (2013)
Eukaryot. Cell 12, 828-852
   Abstract »    Full Text »    PDF »
Genetic Networks Inducing Invasive Growth in Saccharomyces cerevisiae Identified Through Systematic Genome-Wide Overexpression.
C. A. Shively, M. J. Eckwahl, C. J. Dobry, D. Mellacheruvu, A. Nesvizhskii, and A. Kumar (2013)
Genetics 193, 1297-1310
   Abstract »    Full Text »    PDF »
Dysfunctional Mitochondria Modulate cAMP-PKA Signaling and Filamentous and Invasive Growth of Saccharomyces cerevisiae.
A. Aun, T. Tamm, and J. Sedman (2013)
Genetics 193, 467-481
   Abstract »    Full Text »    PDF »
The Filamentous Growth MAPK Pathway Responds to Glucose Starvation Through the Mig1/2 Transcriptional Repressors in Saccharomyces cerevisiae.
S. Karunanithi and P. J. Cullen (2012)
Genetics 192, 869-887
   Abstract »    Full Text »    PDF »
Response to Hyperosmotic Stress.
H. Saito and F. Posas (2012)
Genetics 192, 289-318
   Abstract »    Full Text »    PDF »
Global Gene Deletion Analysis Exploring Yeast Filamentous Growth.
O. Ryan, R. S. Shapiro, C. F. Kurat, D. Mayhew, A. Baryshnikova, B. Chin, Z.-Y. Lin, M. J. Cox, F. Vizeacoumar, D. Cheung, et al. (2012)
Science 337, 1353-1356
   Abstract »    Full Text »    PDF »
Regulation of Vacuolar H+-ATPase Activity by the Cdc42 Effector Ste20 in Saccharomyces cerevisiae.
M. Lin, S. C. Li, P. M. Kane, and T. Hofken (2012)
Eukaryot. Cell 11, 442-451
   Abstract »    Full Text »    PDF »
The Regulation of Filamentous Growth in Yeast.
P. J. Cullen and G. F. Sprague Jr. (2012)
Genetics 190, 23-49
   Abstract »    Full Text »    PDF »
The Membrane Mucin Msb2 Regulates Invasive Growth and Plant Infection in Fusarium oxysporum.
E. Perez-Nadales and A. Di Pietro (2011)
PLANT CELL 23, 1171-1185
   Abstract »    Full Text »    PDF »
Ime1 and Ime2 Are Required for Pseudohyphal Growth of Saccharomyces cerevisiae on Nonfermentable Carbon Sources.
N. Strudwick, M. Brown, V. M. Parmar, and M. Schroder (2010)
Mol. Cell. Biol. 30, 5514-5530
   Abstract »    Full Text »    PDF »
Sho1 and Msb2-Related Proteins Regulate Appressorium Development in the Smut Fungus Ustilago maydis.
D. Lanver, A. Mendoza-Mendoza, A. Brachmann, and R. Kahmann (2010)
PLANT CELL 22, 2085-2101
   Abstract »    Full Text »    PDF »
A Profile of Differentially Abundant Proteins at the Yeast Cell Periphery during Pseudohyphal Growth.
T. Xu, C. A. Shively, R. Jin, M. J. Eckwahl, C. J. Dobry, Q. Song, and A. Kumar (2010)
J. Biol. Chem. 285, 15476-15488
   Abstract »    Full Text »    PDF »
The tRNA Modification Complex Elongator Regulates the Cdc42-Dependent Mitogen-Activated Protein Kinase Pathway That Controls Filamentous Growth in Yeast.
U. Abdullah and P. J. Cullen (2009)
Eukaryot. Cell 8, 1362-1372
   Abstract »    Full Text »    PDF »
Role of the Cell Wall Integrity and Filamentous Growth Mitogen-Activated Protein Kinase Pathways in Cell Wall Remodeling during Filamentous Growth.
B. Birkaya, A. Maddi, J. Joshi, S. J. Free, and P. J. Cullen (2009)
Eukaryot. Cell 8, 1118-1133
   Abstract »    Full Text »    PDF »
Msb2 Signaling Mucin Controls Activation of Cek1 Mitogen-Activated Protein Kinase in Candida albicans.
E. Roman, F. Cottier, J. F. Ernst, and J. Pla (2009)
Eukaryot. Cell 8, 1235-1249
   Abstract »    Full Text »    PDF »
The Signaling Mucins Msb2 and Hkr1 Differentially Regulate the Filamentation Mitogen-activated Protein Kinase Pathway and Contribute to a Multimodal Response.
A. Pitoniak, B. Birkaya, H. M. Dionne, N. Vadaie, and P. J. Cullen (2009)
Mol. Biol. Cell 20, 3101-3114
   Abstract »    Full Text »    PDF »
Glycosylation defects activate filamentous growth Kss1 MAPK and inhibit osmoregulatory Hog1 MAPK.
H.-Y. Yang, K. Tatebayashi, K. Yamamoto, and H. Saito (2009)
EMBO J. 28, 1380-1391
   Abstract »    Full Text »    PDF »
Hog1 Mitogen-Activated Protein Kinase (MAPK) Interrupts Signal Transduction between the Kss1 MAPK and the Tec1 Transcription Factor To Maintain Pathway Specificity.
T. R. Shock, J. Thompson, J. R. Yates III, and H. D. Madhani (2009)
Eukaryot. Cell 8, 606-616
   Abstract »    Full Text »    PDF »
The Membrane Mucin Muc4 Inhibits Apoptosis Induced by Multiple Insults via ErbB2-Dependent and ErbB2-Independent Mechanisms.
H. C. Workman, C. Sweeney, and K. L. Carraway III (2009)
Cancer Res. 69, 2845-2852
   Abstract »    Full Text »    PDF »
Cleavage of the signaling mucin Msb2 by the aspartyl protease Yps1 is required for MAPK activation in yeast.
N. Vadaie, H. Dionne, D. S. Akajagbor, S. R. Nickerson, D. J. Krysan, and P. J. Cullen (2008)
J. Cell Biol. 181, 1073-1081
   Abstract »    Full Text »    PDF »
Cardiolipin Controls the Osmotic Stress Response and the Subcellular Location of Transporter ProP in Escherichia coli.
T. Romantsov, L. Stalker, D. E. Culham, and J. M. Wood (2008)
J. Biol. Chem. 283, 12314-12323
   Abstract »    Full Text »    PDF »
Large-Scale Analysis of Yeast Filamentous Growth by Systematic Gene Disruption and Overexpression.
R. Jin, C. J. Dobry, P. J. McCown, and A. Kumar (2008)
Mol. Biol. Cell 19, 284-296
   Abstract »    Full Text »    PDF »
A Single MAPKKK Regulates the Hog1 MAPK Pathway in the Pathogenic Fungus Candida albicans.
J. Cheetham, D. A. Smith, A. da Silva Dantas, K. S. Doris, M. J. Patterson, C. R. Bruce, and J. Quinn (2007)
Mol. Biol. Cell 18, 4603-4614
   Abstract »    Full Text »    PDF »
Mining biological networks for unknown pathways.
A. Cakmak and G. Ozsoyoglu (2007)
Bioinformatics 23, 2775-2783
   Abstract »    Full Text »    PDF »
Transmembrane mucins Hkr1 and Msb2 are putative osmosensors in the SHO1 branch of yeast HOG pathway.
K. Tatebayashi, K. Tanaka, H.-Y. Yang, K. Yamamoto, Y. Matsushita, T. Tomida, M. Imai, and H. Saito (2007)
EMBO J. 26, 3521-3533
   Abstract »    Full Text »    PDF »
Environmental Sensing and Signal Transduction Pathways Regulating Morphopathogenic Determinants of Candida albicans.
S. Biswas, P. Van Dijck, and A. Datta (2007)
Microbiol. Mol. Biol. Rev. 71, 348-376
   Abstract »    Full Text »    PDF »
Central Roles of Small GTPases in the Development of Cell Polarity in Yeast and Beyond.
H.-O. Park and E. Bi (2007)
Microbiol. Mol. Biol. Rev. 71, 48-96
   Abstract »    Full Text »    PDF »
Pheromone-Induced Degradation of Ste12 Contributes to Signal Attenuation and the Specificity of Developmental Fate.
R. K. Esch, Y. Wang, and B. Errede (2006)
Eukaryot. Cell 5, 2147-2160
   Abstract »    Full Text »    PDF »
Analysis of Mitogen-Activated Protein Kinase Signaling Specificity in Response to Hyperosmotic Stress: Use of an Analog-Sensitive HOG1 Allele.
P. J. Westfall and J. Thorner (2006)
Eukaryot. Cell 5, 1215-1228
   Abstract »    Full Text »    PDF »
The Opi1p Transcription Factor Affects Expression of FLO11, Mat Formation, and Invasive Growth in Saccharomyces cerevisiae.
T. B. Reynolds (2006)
Eukaryot. Cell 5, 1266-1275
   Abstract »    Full Text »    PDF »
Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway.
K. Tatebayashi, K. Yamamoto, K. Tanaka, T. Tomida, T. Maruoka, E. Kasukawa, and H. Saito (2006)
EMBO J. 25, 3033-3044
   Abstract »    Full Text »    PDF »
Adaptor protein Ste50p links the Ste11p MEKK to the HOG pathway through plasma membrane association..
C. Wu, G. Jansen, J. Zhang, D. Y. Thomas, and M. Whiteway (2006)
Genes & Dev. 20, 734-746
   Abstract »    Full Text »    PDF »
The RA Domain of Ste50 Adaptor Protein Is Required for Delivery of Ste11 to the Plasma Membrane in the Filamentous Growth Signaling Pathway of the Yeast Saccharomyces cerevisiae.
D. M. Truckses, J. E. Bloomekatz, and J. Thorner (2006)
Mol. Cell. Biol. 26, 912-928
   Abstract »    Full Text »    PDF »
The Sho1 Adaptor Protein Links Oxidative Stress to Morphogenesis and Cell Wall Biosynthesis in the Fungal Pathogen Candida albicans.
E. Roman, C. Nombela, and J. Pla (2005)
Mol. Cell. Biol. 25, 10611-10627
   Abstract »    Full Text »    PDF »
Ubp10/Dot4p Regulates the Persistence of Ubiquitinated Histone H2B: Distinct Roles in Telomeric Silencing and General Chromatin.
R. G. Gardner, Z. W. Nelson, and D. E. Gottschling (2005)
Mol. Cell. Biol. 25, 6123-6139
   Abstract »    Full Text »    PDF »
Forcing interactions as a genetic screen to identify proteins that exert a defined activity.
M. DeVit, P. J. Cullen, M. Branson, G. F. Sprague Jr., and S. Fields (2005)
Genome Res. 15, 560-565
   Abstract »    Full Text »    PDF »
Mitogen-Activated Protein Kinases with Distinct Requirements for Ste5 Scaffolding Influence Signaling Specificity in Saccharomyces cerevisiae.
L. J. Flatauer, S. F. Zadeh, and L. Bardwell (2005)
Mol. Cell. Biol. 25, 1793-1803
   Abstract »    Full Text »    PDF »
SIGNAL TRANSDUCTION: Signaling Specificity in Yeast.
E. A. Elion, M. Qi, and W. Chen (2005)
Science 307, 687-688
   Abstract »    Full Text »    PDF »
Jekyll and Hyde in the Microbial World.
D. M. Truckses, L. S. Garrenton, and J. Thorner (2004)
Science 306, 1509-1511
   Abstract »    Full Text »    PDF »
When the Stress of Your Environment Makes You Go HOG Wild.
P. J. Westfall, D. R. Ballon, and J. Thorner (2004)
Science 306, 1511-1512
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882