Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Genes & Dev. 19 (14): 1715-1722

Copyright © 2005 by Cold Spring Harbor Laboratory Press.


Runx1 prevents wasting, myofibrillar disorganization, and autophagy of skeletal muscle

Xiaoxia Wang1, Chris Blagden1, Jihua Fan1, Scott J. Nowak1, Ichiro Taniuchi2, Dan R. Littman2, and Steven J. Burden1,3

1 Molecular Neurobiology Program, 2 Molecular Pathogenesis Program and Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, New York 10016, USA

Abstract: Disruptions in the use of skeletal muscle lead to muscle atrophy. After short periods of disuse, muscle atrophy is reversible, and even after prolonged periods of inactivity, myofiber degeneration is uncommon. The pathways that regulate atrophy, initiated either by peripheral nerve damage, immobilization, aging, catabolic steroids, or cancer cachexia, however, are poorly understood. Previously, we found that Runx1 (AML1), a DNA-binding protein that is homologous to Drosophila Runt and has critical roles in hematopoiesis and leukemogenesis, is poorly expressed in innervated muscle, but strongly induced in muscle shortly after denervation. To determine the function of Runx1 in skeletal muscle, we generated mice in which Runx1 was selectively inactivated in muscle. Here, we show that Runx1 is required to sustain muscle by preventing denervated myofibers from undergoing myofibrillar disorganization and autophagy, structural defects found in a variety of congenital myopathies. We find that only 29 genes, encoding ion channels, signaling molecules, and muscle structural proteins, depend upon Runx1 expression, suggesting that their misregulation causes the dramatic muscle wasting. These findings demonstrate an unexpected role for electrical activity in regulating muscle wasting, and indicate that muscle disuse induces compensatory mechanisms that limit myofiber atrophy. Moreover, these results suggest that reduced muscle activity could cause or contribute to congenital myopathies if Runx1 or its target genes were compromised.

Key Words: Atrophy • myopathy • acute myeloid leukemia • hematopoiesis • denervation

Received for publication March 25, 2005. Accepted for publication May 26, 2005.

Article and publication are at

3 Corresponding author.

E-MAIL burden{at}; FAX (212) 263-2842.

Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy.
J. P. Chua, S. L. Reddy, D. E. Merry, H. Adachi, M. Katsuno, G. Sobue, D. M. Robins, and A. P. Lieberman (2014)
Hum. Mol. Genet. 23, 1376-1386
   Abstract »    Full Text »    PDF »
Cathepsin B Contributes to Autophagy-related 7 (Atg7)-induced Nod-like Receptor 3 (NLRP3)-dependent Proinflammatory Response and Aggravates Lipotoxicity in Rat Insulinoma Cell Line.
S. Li, L. Du, L. Zhang, Y. Hu, W. Xia, J. Wu, J. Zhu, L. Chen, F. Zhu, C. Li, et al. (2013)
J. Biol. Chem. 288, 30094-30104
   Abstract »    Full Text »    PDF »
Stress-induced Skeletal Muscle Gadd45a Expression Reprograms Myonuclei and Causes Muscle Atrophy.
S. M. Ebert, M. C. Dyle, S. D. Kunkel, S. A. Bullard, K. S. Bongers, D. K. Fox, J. M. Dierdorff, E. D. Foster, and C. M. Adams (2012)
J. Biol. Chem. 287, 27290-27301
   Abstract »    Full Text »    PDF »
Rel A/p65 is required for cytokine-induced myotube atrophy.
T. Yamaki, C.-L. Wu, M. Gustin, J. Lim, R. W. Jackman, and S. C. Kandarian (2012)
Am J Physiol Cell Physiol 303, C135-C142
   Abstract »    Full Text »    PDF »
Mechanisms underlying the sparing of masticatory versus limb muscle function in an experimental critical illness model.
S. Aare, J. Ochala, H. S. Norman, P. Radell, L. I. Eriksson, H. Goransson, Y.-W. Chen, E. P. Hoffman, and L. Larsson (2011)
Physiol Genomics 43, 1334-1350
   Abstract »    Full Text »    PDF »
RUNX transcription factors: association with pediatric asthma and modulated by maternal smoking.
K. J. Haley, J. Lasky-Su, S. E. Manoli, L. A. Smith, A. Shahsafaei, S. T. Weiss, and K. Tantisira (2011)
Am J Physiol Lung Cell Mol Physiol 301, L693-L701
   Abstract »    Full Text »    PDF »
Neurofibromin (Nf1) is required for skeletal muscle development.
N. Kossler, S. Stricker, C. Rodelsperger, P. N. Robinson, J. Kim, C. Dietrich, M. Osswald, J. Kuhnisch, D. A. Stevenson, T. Braun, et al. (2011)
Hum. Mol. Genet. 20, 2697-2709
   Abstract »    Full Text »    PDF »
Running with regulation.
O. Hansson (2011)
J Appl Physiol 110, 13-14
   Full Text »    PDF »
A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype.
P. Keller, N. B. J. Vollaard, T. Gustafsson, I. J. Gallagher, C. J. Sundberg, T. Rankinen, S. L. Britton, C. Bouchard, L. G. Koch, and J. A. Timmons (2011)
J Appl Physiol 110, 46-59
   Abstract »    Full Text »    PDF »
Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy.
M. Sandri (2010)
Am J Physiol Cell Physiol 298, C1291-C1297
   Abstract »    Full Text »    PDF »
Runx1 Directly Promotes Proliferation of Hair Follicle Stem Cells and Epithelial Tumor Formation in Mouse Skin.
C. S. L. Hoi, S. E. Lee, S. Y. Lu, D. J. McDermitt, K. M. Osorio, C. M. Piskun, R. M. Peters, R. Paus, and T. Tumbar (2010)
Mol. Cell. Biol. 30, 2518-2536
   Abstract »    Full Text »    PDF »
Gene expression and muscle fiber function in a porcine ICU model.
V. C. Banduseela, J. Ochala, Y.-W. Chen, H. Goransson, H. Norman, P. Radell, L. I. Eriksson, E. P. Hoffman, and L. Larsson (2009)
Physiol Genomics 39, 141-159
   Abstract »    Full Text »    PDF »
The role of autophagy in sensitizing malignant glioma cells to radiation therapy.
W. Zhuang, Z. Qin, and Z. Liang (2009)
Acta Biochim Biophys Sin 41, 341-351
   Abstract »    Full Text »    PDF »
Transcriptional repression of the RUNX3/AML2 gene by the t(8;21) and inv(16) fusion proteins in acute myeloid leukemia.
C. K. Cheng, L. Li, S. H. Cheng, K. M. Lau, N. P. H. Chan, R. S. M. Wong, M. M. K. Shing, C. K. Li, and M. H. L. Ng (2008)
Blood 112, 3391-3402
   Abstract »    Full Text »    PDF »
Signaling in Muscle Atrophy and Hypertrophy.
M. Sandri (2008)
Physiology 23, 160-170
   Abstract »    Full Text »    PDF »
Different autonomous myogenic cell populations revealed by ablation of Myf5-expressing cells during mouse embryogenesis.
N. Gensch, T. Borchardt, A. Schneider, D. Riethmacher, and T. Braun (2008)
Development 135, 1597-1604
   Abstract »    Full Text »    PDF »
Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation.
K. M. Osorio, S. E. Lee, D. J. McDermitt, S. K. Waghmare, Y. V. Zhang, H. N. Woo, and T. Tumbar (2008)
Development 135, 1059-1068
   Abstract »    Full Text »    PDF »
Gene profiling of skeletal muscle in an amyotrophic lateral sclerosis mouse model.
J.-L. Gonzalez de Aguilar, C. Niederhauser-Wiederkehr, B. Halter, M. De Tapia, F. Di Scala, P. Demougin, L. Dupuis, M. Primig, V. Meininger, and J.-P. Loeffler (2008)
Physiol Genomics 32, 207-218
   Abstract »    Full Text »    PDF »
Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation.
C. Kang, Y.-j. You, and L. Avery (2007)
Genes & Dev. 21, 2161-2171
   Abstract »    Full Text »    PDF »
S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover.
V. Mieulet, M. Roceri, C. Espeillac, A. Sotiropoulos, M. Ohanna, V. Oorschot, J. Klumperman, M. Sandri, and M. Pende (2007)
Am J Physiol Cell Physiol 293, C712-C722
   Abstract »    Full Text »    PDF »
AML1/RUNX1 Phosphorylation by Cyclin-Dependent Kinases Regulates the Degradation of AML1/RUNX1 by the Anaphase-Promoting Complex.
J. R. Biggs, L. F. Peterson, Y. Zhang, A. S. Kraft, and D.-E. Zhang (2006)
Mol. Cell. Biol. 26, 7420-7429
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882