Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Genes & Dev. 19 (3): 311-315

Copyright © 2005 by Cold Spring Harbor Laboratory Press.


Foxl1 is a mesenchymal Modifier of Min in carcinogenesis of stomach and colon

Nathalie Perreault1,4, Sara D. Sackett1,4, Jonathan P. Katz1,2, Emma E. Furth3, and Klaus H. Kaestner1,5

Departments of 1 Genetics and 2 Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104-6145, USA; 3 Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-4283, USA

Abstract: Constitutive activation of the Wnt/APC/{beta}-catenin pathway is a frequent initiating event in gastrointestinal carcinogenesis. Mutations in the Adenomatous Polyposis Coli (APC) gene up-regulate Wnt signaling by stabilizing {beta}-catenin and causing activation of targets important in proliferation control. Here we show that loss of the mesenchymal transcription factor Foxl1 leads to a marked increase in tumor multiplicity in the colon of ApcMin mice. ApcMin/+;Foxl1-/- mice also develop gastric tumors not observed in ApcMin mice. These effects are caused by earlier tumor initiation due to accelerated loss of heterozygosity (LOH) at the Apc locus. Foxl1 is the first mesenchymal Modifier of Min and plays a key role in gastrointestinal tumorigenesis.

Key Words: APC • FAP • FOXL1 • LOH • {beta}-catenin

Received for publication September 10, 2004. Accepted for publication December 1, 2004.

Article published online ahead of print. Article and publication date are at

4 These authors have contributed equally to this work.

5 Corresponding author.
E-MAIL kaestner{at}; FAX (215) 573-5892.

Estrogen receptor {alpha} or {beta} loss in the colon of Min/+ mice promotes crypt expansion and impairs TGF{beta} and HNF3{beta} signaling.
R. M. Hasson, A. Briggs, A. M. Carothers, J. S. Davids, J. Wang, S. H. Javid, N. L. Cho, and M. M. Bertagnolli (2014)
Carcinogenesis 35, 96-102
   Abstract »    Full Text »    PDF »
FOXL1, a Novel Candidate Tumor Suppressor, Inhibits Tumor Aggressiveness and Predicts Outcome in Human Pancreatic Cancer.
G. Zhang, P. He, J. Gaedcke, B. M. Ghadimi, T. Ried, H. G. Yfantis, D. H. Lee, N. Hanna, H. R. Alexander, and S. P. Hussain (2013)
Cancer Res. 73, 5416-5425
   Abstract »    Full Text »    PDF »
TFRank: network-based prioritization of regulatory associations underlying transcriptional responses.
J. P. Goncalves, A. P. Francisco, N. P. Mira, M. C. Teixeira, I. Sa-Correia, A. L. Oliveira, and S. C. Madeira (2011)
Bioinformatics 27, 3149-3157
   Abstract »    Full Text »    PDF »
Epithelial BMP signaling is required for proper specification of epithelial cell lineages and gastric endocrine cells.
F. Maloum, J. M. Allaire, J. Gagne-Sansfacon, E. Roy, K. Belleville, P. Sarret, J. Morisset, J. C. Carrier, Y. Mishina, K. H. Kaestner, et al. (2011)
Am J Physiol Gastrointest Liver Physiol 300, G1065-G1079
   Abstract »    Full Text »    PDF »
Epithelial phosphatase and tensin homolog regulates intestinal architecture and secretory cell commitment and acts as a modifier gene in neoplasia.
M.-J. Langlois, S. A. B. Roy, B. A. Auclair, C. Jones, F. Boudreau, J. C. Carrier, N. Rivard, and N. Perreault (2009)
FASEB J 23, 1835-1844
   Abstract »    Full Text »    PDF »
FoxF1 and FoxL1 Link Hedgehog Signaling and the Control of Epithelial Proliferation in the Developing Stomach and Intestine.
B. B. Madison, L. B. McKenna, D. Dolson, D. J. Epstein, and K. H. Kaestner (2009)
J. Biol. Chem. 284, 5936-5944
   Abstract »    Full Text »    PDF »
The expanding role of mouse genetics for understanding human biology and disease.
D. Nguyen and T. Xu (2008)
Dis. Model. Mech. 1, 56-66
   Abstract »    Full Text »    PDF »
Loss of cathepsin L activity promotes claudin-1 overexpression and intestinal neoplasia.
F. Boudreau, C. R. Lussier, S. Mongrain, M. Darsigny, J. L. Drouin, G. Doyon, E. R. Suh, J.-F. Beaulieu, N. Rivard, and N. Perreault (2007)
FASEB J 21, 3853-3865
   Abstract »    Full Text »    PDF »
Giving APCmin tumours a SPARC.
A. Gregorieff and H. Clevers (2007)
Gut 56, 1341-1343
   Full Text »    PDF »
Development of Gastric Tumors in ApcMin/+ Mice by the Activation of the {beta}-Catenin/Tcf Signaling Pathway.
H. Tomita, Y. Yamada, T. Oyama, K. Hata, Y. Hirose, A. Hara, T. Kunisada, Y. Sugiyama, Y. Adachi, H. Linhart, et al. (2007)
Cancer Res. 67, 4079-4087
   Abstract »    Full Text »    PDF »
Foxl1-deficient mice exhibit aberrant epithelial cell positioning resulting from dysregulated EphB/EphrinB expression in the small intestine.
M. Takano-Maruyama, K. Hase, H. Fukamachi, Y. Kato, H. Koseki, and H. Ohno (2006)
Am J Physiol Gastrointest Liver Physiol 291, G163-G170
   Abstract »    Full Text »    PDF »
Foxf1 and Foxf2 control murine gut development by limiting mesenchymal Wnt signaling and promoting extracellular matrix production.
M. Ormestad, J. Astorga, H. Landgren, T. Wang, B. R. Johansson, N. Miura, and P. Carlsson (2006)
Development 133, 833-843
   Abstract »    Full Text »    PDF »
Emerging role of KLF4 in human gastrointestinal cancer.
D. Wei, M. Kanai, S. Huang, and K. Xie (2006)
Carcinogenesis 27, 23-31
   Abstract »    Full Text »    PDF »
Epithelial Cells and Their Neighbors I. Role of intestinal myofibroblasts in development, repair, and cancer.
D. W. Powell, P. A. Adegboyega, J. F. Di Mari, and R. C. Mifflin (2005)
Am J Physiol Gastrointest Liver Physiol 289, G2-G7
   Abstract »    Full Text »    PDF »
Wnt signaling in the intestinal epithelium: from endoderm to cancer.
A. Gregorieff and H. Clevers (2005)
Genes & Dev. 19, 877-890
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882