Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Genes & Dev. 19 (9): 1067-1080

Copyright © 2005 by Cold Spring Harbor Laboratory Press.


RESEARCH PAPER

Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs

Eric C. Lai1, Bergin Tam, and Gerald M. Rubin

Department of Molecular and Cell Biology/Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720-3200, USA

Abstract: Although hundreds of distinct animal microRNAs (miRNAs) are known, the specific biological functions of only a handful are understood at present. Here, we demonstrate that three different families of Drosophila miRNAs directly regulate two large families of Notch target genes, including basic helix–loop–helix (bHLH) repressor and Bearded family genes. These miRNAs regulate Notch target gene activity via GY-box (GUCUUCC), Brd-box (AGCUUUA), and K-box (cUGUGAUa) motifs. These are conserved sites in target 3'-untranslated regions (3'-UTRs) that are complementary to the 5'-ends of miRNAs, or "seed" regions. Collectively, these motifs represent >40 miRNA-binding sites in Notch target genes, and we show all three classes of motif to be necessary and sufficient for miRNA-mediated regulation in vivo. Importantly, many of the validated miRNA-binding sites have limited pairing to miRNAs outside of the "box:seed" region. Consistent with this, we find that seed-related miRNAs that are otherwise quite divergent can regulate the same target sequences. Finally, we demonstrate that ectopic expression of several Notch-regulating miRNAs induces mutant phenotypes that are characteristic of Notch pathway loss of function, including loss of wing margin, thickened wing veins, increased bristle density, and tufted bristles. Collectively, these data establish insights into miRNA target recognition and demonstrate that the Notch signaling pathway is a major target of miRNA-mediated regulation in Drosophila.

Key Words: microRNA • Notch signaling • Enhancer of split-Complex • Bearded-Complex

Received for publication December 20, 2004. Accepted for publication March 14, 2005.


Supplemental material is available at http://www.genesdev.org.

Article published online ahead of print. Article and publication date are at http://www.genesdev.org/cgi/doi/10.1101/gad.1291905.

1 Corresponding author.

E-MAIL lai{at}fruitfly.org; FAX (510) 643-9947.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Systematic design and functional analysis of artificial microRNAs.
J. D. Arroyo, E. N. Gallichotte, and M. Tewari (2014)
Nucleic Acids Res.
   Abstract »    Full Text »    PDF »
A genome-wide transgenic resource for conditional expression of Drosophila microRNAs.
F. Bejarano, D. Bortolamiol-Becet, Q. Dai, K. Sun, A. Saj, Y.-T. Chou, D. R. Raleigh, K. Kim, J.-Q. Ni, H. Duan, et al. (2012)
Development 139, 2821-2831
   Abstract »    Full Text »    PDF »
A Systematic Genetic Screen to Dissect the MicroRNA Pathway in Drosophila.
S. Pressman, C. A. Reinke, X. Wang, and R. W. Carthew (2012)
g3 2, 437-448
   Abstract »    Full Text »    PDF »
MicroRNA Transgene Overexpression Complements Deficiency-Based Modifier Screens in Drosophila.
S. Szuplewski, J.-M. Kugler, S. F. Lim, P. Verma, Y.-W. Chen, and S. M. Cohen (2012)
Genetics 190, 617-626
   Abstract »    Full Text »    PDF »
miR-124 function during Ciona intestinalis neuronal development includes extensive interaction with the Notch signaling pathway.
J. S. Chen, M. S. Pedro, and R. W. Zeller (2011)
Development 138, 4943-4953
   Abstract »    Full Text »    PDF »
Experimental strategies for microRNA target identification.
D. W. Thomson, C. P. Bracken, and G. J. Goodall (2011)
Nucleic Acids Res. 39, 6845-6853
   Abstract »    Full Text »    PDF »
mir-11 limits the proapoptotic function of its host gene, dE2f1.
M. Truscott, A. B. M. M. K. Islam, N. Lopez-Bigas, and M. V. Frolov (2011)
Genes & Dev. 25, 1820-1834
   Abstract »    Full Text »    PDF »
Megakaryocytes differentially sort mRNAs for matrix metalloproteinases and their inhibitors into platelets: a mechanism for regulating synthetic events.
L. Cecchetti, N. D. Tolley, N. Michetti, L. Bury, A. S. Weyrich, and P. Gresele (2011)
Blood 118, 1903-1911
   Abstract »    Full Text »    PDF »
The microRNA pathway regulates the temporal pattern of Notch signaling in Drosophila follicle cells.
J. S. Poulton, Y.-C. Huang, L. Smith, J. Sun, N. Leake, J. Schleede, L. M. Stevens, and W.-M. Deng (2011)
Development 138, 1737-1745
   Abstract »    Full Text »    PDF »
MicroRNA Expression Profiles are Altered by Gonadotropins and Vitamin C Status During In Vitro Follicular Growth.
Yong Jin Kim, Seung Yup Ku, Z. Rosenwaks, Hung Ching Liu, Sung Wook Chi, Jae Seung Kang, Wang Jae Lee, Kyung Chun Jung, Seok Hyun Kim, Young Min Choi, et al. (2010)
Reproductive Sciences 17, 1081-1089
   Abstract »    PDF »
Evolution of a genomic regulatory domain: The role of gene co-option and gene duplication in the Enhancer of split complex.
E. J. Duncan and P. K. Dearden (2010)
Genome Res. 20, 917-928
   Abstract »    Full Text »    PDF »
The Neuronal MicroRNA miR-326 Acts in a Feedback Loop with Notch and Has Therapeutic Potential against Brain Tumors.
B. Kefas, L. Comeau, D. H. Floyd, O. Seleverstov, J. Godlewski, T. Schmittgen, J. Jiang, C. G. diPierro, Y. Li, E. A. Chiocca, et al. (2009)
J. Neurosci. 29, 15161-15168
   Abstract »    Full Text »    PDF »
Genome Engineering-Based Analysis of Bearded Family Genes Reveals Both Functional Redundancy and a Nonessential Function in Lateral Inhibition in Drosophila.
S. Chanet, N. Vodovar, V. Mayau, and F. Schweisguth (2009)
Genetics 182, 1101-1108
   Abstract »    Full Text »    PDF »
Small RNA molecules in the regulation of spermatogenesis.
Z. He, M. Kokkinaki, D. Pant, G I. Gallicano, and M. Dym (2009)
Reproduction 137, 901-911
   Abstract »    Full Text »    PDF »
Epigenetic and microRNA-mediated regulation in diabetes.
P. Muhonen and H. Holthofer (2009)
Nephrol. Dial. Transplant. 24, 1088-1096
   Full Text »    PDF »
A Drosophila pasha Mutant Distinguishes the Canonical MicroRNA and Mirtron Pathways.
R. Martin, P. Smibert, A. Yalcin, D. M. Tyler, U. Schafer, T. Tuschl, and E. C. Lai (2009)
Mol. Cell. Biol. 29, 861-870
   Abstract »    Full Text »    PDF »
MicroRNA Regulation of DNA Repair Gene Expression in Hypoxic Stress.
M. E. Crosby, R. Kulshreshtha, M. Ivan, and P. M. Glazer (2009)
Cancer Res. 69, 1221-1229
   Abstract »    Full Text »    PDF »
Post-transcriptional regulation of mouse {micro} opioid receptor (MOR1) via its 3' untranslated region: a role for microRNA23b.
Q. Wu, P.-Y. Law, L.-N. Wei, and H. H. Loh (2008)
FASEB J 22, 4085-4095
   Abstract »    Full Text »    PDF »
Identification of Dynamically Regulated MicroRNA and mRNA Networks in Developing Oligodendrocytes.
P. Lau, J. D. Verrier, J. A. Nielsen, K. R. Johnson, L. Notterpek, and L. D. Hudson (2008)
J. Neurosci. 28, 11720-11730
   Abstract »    Full Text »    PDF »
The microRNA miR-8 is a conserved negative regulator of Wnt signaling.
J. A. Kennell, I. Gerin, O. A. MacDougald, and K. M. Cadigan (2008)
PNAS 105, 15417-15422
   Abstract »    Full Text »    PDF »
microRNA-7 Inhibits the Epidermal Growth Factor Receptor and the Akt Pathway and Is Down-regulated in Glioblastoma.
B. Kefas, J. Godlewski, L. Comeau, Y. Li, R. Abounader, M. Hawkinson, J. Lee, H. Fine, E. A. Chiocca, S. Lawler, et al. (2008)
Cancer Res. 68, 3566-3572
   Abstract »    Full Text »    PDF »
Prediction of both conserved and nonconserved microRNA targets in animals.
X. Wang and I. M. El Naqa (2008)
Bioinformatics 24, 325-332
   Abstract »    Full Text »    PDF »
Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs.
J. G. Ruby, A. Stark, W. K. Johnston, M. Kellis, D. P. Bartel, and E. C. Lai (2007)
Genome Res. 17, 1850-1864
   Abstract »    Full Text »    PDF »
Functional screening identifies miR-315 as a potent activator of Wingless signaling.
S. J. Silver, J. W. Hagen, K. Okamura, N. Perrimon, and E. C. Lai (2007)
PNAS 104, 18151-18156
   Abstract »    Full Text »    PDF »
Phylogenetic Footprinting Analysis in the Upstream Regulatory Regions of the Drosophila Enhancer of split Genes.
M. L. Maeder, B. J. Polansky, B. E. Robson, and D. A. Eastman (2007)
Genetics 177, 1377-1394
   Abstract »    Full Text »    PDF »
Disrupting the Pairing Between let-7 and Hmga2 Enhances Oncogenic Transformation.
C. Mayr, M. T. Hemann, and D. P. Bartel (2007)
Science 315, 1576-1579
   Abstract »    Full Text »    PDF »
MicroRNAs: regulators of gene expression and cell differentiation.
R. A. Shivdasani (2006)
Blood 108, 3646-3653
   Abstract »    Full Text »    PDF »
Systematic identification of microRNA functions by combining target prediction and expression profiling.
X. Wang and X. Wang (2006)
Nucleic Acids Res. 34, 1646-1652
   Abstract »    Full Text »    PDF »
TarBase: A comprehensive database of experimentally supported animal microRNA targets.
P. SETHUPATHY, B. CORDA, and A. G. HATZIGEORGIOU (2006)
RNA 12, 192-197
   Abstract »    Full Text »    PDF »
Cloning and expression of new microRNAs from zebrafish..
W. P. Kloosterman, F. A. Steiner, E. Berezikov, E. de Bruijn, J. van de Belt, M. Verheul, E. Cuppen, and R. H.A. Plasterk (2006)
Nucleic Acids Res. 34, 2558-2569
   Abstract »    Full Text »    PDF »
The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution.
K. K.-H. Farh, A. Grimson, C. Jan, B. P. Lewis, W. K. Johnston, L. P. Lim, C. B. Burge, and D. P. Bartel (2005)
Science 310, 1817-1821
   Abstract »    Full Text »    PDF »
The Drosophila microRNA iab-4 causes a dominant homeotic transformation of halteres to wings.
M. Ronshaugen, F. Biemar, J. Piel, M. Levine, and E. C. Lai (2005)
Genes & Dev. 19, 2947-2952
   Abstract »    Full Text »    PDF »
Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development.
A. A. Aboobaker, P. Tomancak, N. Patel, G. M. Rubin, and E. C. Lai (2005)
PNAS 102, 18017-18022
   Abstract »    Full Text »    PDF »
The Effect of Polymorphisms in the Enhancer of split Gene Complex on Bristle Number Variation in a Large Wild-Caught Cohort of Drosophila melanogaster.
S. J. Macdonald, T. Pastinen, and A. D. Long (2005)
Genetics 171, 1741-1756
   Abstract »    Full Text »    PDF »
DEVELOPMENTAL BIOLOGY: Enhanced: Encountering MicroRNAs in Cell Fate Signaling.
X. Karp and V. Ambros (2005)
Science 310, 1288-1289
   Abstract »    Full Text »    PDF »
microPrimer: the biogenesis and function of microRNA.
T. Du and P. D. Zamore (2005)
Development 132, 4645-4652
   Abstract »    Full Text »    PDF »
MicroRNA functions in animal development and human disease.
I. Alvarez-Garcia and E. A. Miska (2005)
Development 132, 4653-4662
   Abstract »    Full Text »    PDF »
Ribo-gnome: The Big World of Small RNAs.
P. D. Zamore and B. Haley (2005)
Science 309, 1519-1524
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882