Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Genes & Dev. 20 (14): 1868-1873

Copyright © 2006 by Cold Spring Harbor Laboratory Press.


RESEARCH COMMUNICATION

Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock

Roman V. Kondratov1,4, Anna A. Kondratova2, Victoria Y. Gorbacheva1, Olena V. Vykhovanets1, and Marina P. Antoch1,3

1 Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA;
2 Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA

Abstract: Mice deficient in the circadian transcription factor BMAL1 (brain and muscle ARNT-like protein) have impaired circadian behavior and demonstrate loss of rhythmicity in the expression of target genes. Here we report that Bmal1–/– mice have reduced lifespans and display various symptoms of premature aging including sarcopenia, cataracts, less subcutaneous fat, organ shrinkage, and others. The early aging phenotype correlates with increased levels of reactive oxygen species in some tissues of the Bmal1–/– animals. These findings, together with data on CLOCK/BMAL1-dependent control of stress responses, may provide a mechanistic explanation for the early onset of age-related pathologies in the absence of BMAL1.

Key Words: BMAL1 • circadian clock • aging

Received for publication March 22, 2006. Accepted for publication May 9, 2006.


3 Corresponding authors.

E-MAIL antochm{at}ccf.org; FAX (216) 445-6269.

4 E-MAIL kondrar{at}ccf.org; FAX (216) 445-6269.

Supplemental material is available at http://www.genesdev.org.

Article is online at http://www.genesdev.org/cgi/doi/10.1101/gad.1432206


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis.
V. Pekovic-Vaughan, J. Gibbs, H. Yoshitane, N. Yang, D. Pathiranage, B. Guo, A. Sagami, K. Taguchi, D. Bechtold, A. Loudon, et al. (2014)
Genes & Dev. 28, 548-560
   Abstract »    Full Text »    PDF »
Adipocytes in Skin Health and Disease.
G. Rivera-Gonzalez, B. Shook, and V. Horsley (2014)
Cold Spring Harb Perspect Med 4, a015271
   Abstract »    Full Text »    PDF »
Circadian clock function is disrupted by environmental tobacco/cigarette smoke, leading to lung inflammation and injury via a SIRT1-BMAL1 pathway.
J.-W. Hwang, I. K. Sundar, H. Yao, M. T. Sellix, and I. Rahman (2014)
FASEB J 28, 176-194
   Abstract »    Full Text »    PDF »
Knitting Up the Raveled Sleave of Care.
G. Yang, G. Paschos, A. M. Curtis, E. S. Musiek, S. C. McLoughlin, and G. A. FitzGerald (2013)
Science Translational Medicine 5, 212rv3
   Full Text »    PDF »
Consequences of Exposure to Light at Night on the Pancreatic Islet Circadian Clock and Function in Rats.
J. Qian, G. D. Block, C. S. Colwell, and A. V. Matveyenko (2013)
Diabetes 62, 3469-3478
   Abstract »    Full Text »    PDF »
Regulation of Circadian Clocks by Redox Homeostasis.
A. Stangherlin and A. B. Reddy (2013)
J. Biol. Chem. 288, 26505-26511
   Abstract »    Full Text »    PDF »
Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling.
M. V. Plikus, C. Vollmers, D. de la Cruz, A. Chaix, R. Ramos, S. Panda, and C.-M. Chuong (2013)
PNAS 110, E2106-E2115
   Abstract »    Full Text »    PDF »
Bmal1 and {beta}-Cell Clock Are Required for Adaptation to Circadian Disruption, and Their Loss of Function Leads to Oxidative Stress-Induced {beta}-Cell Failure in Mice.
J. Lee, M. Moulik, Z. Fang, P. Saha, F. Zou, Y. Xu, D. L. Nelson, K. Ma, D. D. Moore, and V. K. Yechoor (2013)
Mol. Cell. Biol. 33, 2327-2338
   Abstract »    Full Text »    PDF »
Brain and muscle Arnt-like 1 is a key regulator of myogenesis.
S. Chatterjee, D. Nam, B. Guo, J. M. Kim, G. E. Winnier, J. Lee, R. Berdeaux, V. K. Yechoor, and K. Ma (2013)
J. Cell Sci. 126, 2213-2224
   Abstract »    Full Text »    PDF »
Metabolism and the Circadian Clock Converge.
K. Eckel-Mahan and P. Sassone-Corsi (2013)
Physiol Rev 93, 107-135
   Abstract »    Full Text »    PDF »
Increased Superoxide and Endothelial NO Synthase Uncoupling in Blood Vessels of Bmal1-Knockout Mice.
C. B. Anea, B. Cheng, S. Sharma, S. Kumar, R. W. Caldwell, L. Yao, M. I. Ali, A. M. Merloiu, D. W. Stepp, S. M. Black, et al. (2012)
Circ. Res. 111, 1157-1165
   Abstract »    Full Text »    PDF »
Core circadian protein CLOCK is a positive regulator of NF-{kappa}B-mediated transcription.
M. L. Spengler, K. K. Kuropatwinski, M. Comas, A. V. Gasparian, N. Fedtsova, A. S. Gleiberman, I. I. Gitlin, N. M. Artemicheva, K. A. Deluca, A. V. Gudkov, et al. (2012)
PNAS 109, E2457-E2465
   Abstract »    Full Text »    PDF »
Sirtuins and Pyridine Nucleotides.
M. Abdellatif (2012)
Circ. Res. 111, 642-656
   Abstract »    Full Text »    PDF »
Development of dilated cardiomyopathy in Bmal1-deficient mice.
M. Lefta, K. S. Campbell, H.-Z. Feng, J.-P. Jin, and K. A. Esser (2012)
Am J Physiol Heart Circ Physiol 303, H475-H485
   Abstract »    Full Text »    PDF »
The clock gene, brain and muscle Arnt-like 1, regulates adipogenesis via Wnt signaling pathway.
B. Guo, S. Chatterjee, L. Li, J. M. Kim, J. Lee, V. K. Yechoor, L. J. Minze, W. Hsueh, and K. Ma (2012)
FASEB J 26, 3453-3463
   Abstract »    Full Text »    PDF »
Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis.
M. Geyfman, V. Kumar, Q. Liu, R. Ruiz, W. Gordon, F. Espitia, E. Cam, S. E. Millar, P. Smyth, A. Ihler, et al. (2012)
PNAS 109, 11758-11763
   Abstract »    Full Text »    PDF »
Coordination of the transcriptome and metabolome by the circadian clock.
K. L. Eckel-Mahan, V. R. Patel, R. P. Mohney, K. S. Vignola, P. Baldi, and P. Sassone-Corsi (2012)
PNAS 109, 5541-5546
   Abstract »    Full Text »    PDF »
Involvement of Stress Kinase Mitogen-activated Protein Kinase Kinase 7 in Regulation of Mammalian Circadian Clock.
Y. Uchida, T. Osaki, T. Yamasaki, T. Shimomura, S. Hata, K. Horikawa, S. Shibata, T. Todo, J. Hirayama, and H. Nishina (2012)
J. Biol. Chem. 287, 8318-8326
   Abstract »    Full Text »    PDF »
Progression of the Prothrombotic State in Aging Bmal1-Deficient Mice.
B. Hemmeryckx, C. E. Van Hove, P. Fransen, J. Emmerechts, A. Kauskot, H. Bult, H. R. Lijnen, and M. F. Hoylaerts (2011)
Arterioscler Thromb Vasc Biol 31, 2552-2559
   Abstract »    Full Text »    PDF »
Bmal1 in the Nervous System Is Essential for Normal Adaptation of Circadian Locomotor Activity and Food Intake to Periodic Feeding.
M. Mieda and T. Sakurai (2011)
J. Neurosci. 31, 15391-15396
   Abstract »    Full Text »    PDF »
Tissue-intrinsic dysfunction of circadian clock confers transplant arteriosclerosis.
B. Cheng, C. B. Anea, L. Yao, F. Chen, V. Patel, A. Merloiu, P. Pati, R. W. Caldwell, D. J. Fulton, and R. D. Rudic (2011)
PNAS 108, 17147-17152
   Abstract »    Full Text »    PDF »
Therapeutic potential of melatonin and its analogs in Parkinson's disease: focus on sleep and neuroprotection.
V. Srinivasan, D. P. Cardinali, U. S. Srinivasan, C. Kaur, G. M. Brown, D. W. Spence, R. Hardeland, and S. R. Pandi-Perumal (2011)
Therapeutic Advances in Neurological Disorders 4, 297-317
   Abstract »    PDF »
Circadian Rhythms, Aging, and Life Span in Mammals.
O. Froy (2011)
Physiology 26, 225-235
   Abstract »    Full Text »    PDF »
Rhythmic Diurnal Gene Expression in Human Adipose Tissue From Individuals Who Are Lean, Overweight, and Type 2 Diabetic.
D. T. Otway, S. Mantele, S. Bretschneider, J. Wright, P. Trayhurn, D. J. Skene, M. D. Robertson, and J. D. Johnston (2011)
Diabetes 60, 1577-1581
   Abstract »    Full Text »    PDF »
Mammalian circadian clock and metabolism - the epigenetic link.
M. M. Bellet and P. Sassone-Corsi (2010)
J. Cell Sci. 123, 3837-3848
   Abstract »    Full Text »    PDF »
Dysregulation of Inflammatory Responses by Chronic Circadian Disruption.
O. Castanon-Cervantes, M. Wu, J. C. Ehlen, K. Paul, K. L. Gamble, R. L. Johnson, R. C. Besing, M. Menaker, A. T. Gewirtz, and A. J. Davidson (2010)
J. Immunol. 185, 5796-5805
   Abstract »    Full Text »    PDF »
CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function.
J. L. Andrews, X. Zhang, J. J. McCarthy, E. L. McDearmon, T. A. Hornberger, B. Russell, K. S. Campbell, S. Arbogast, M. B. Reid, J. R. Walker, et al. (2010)
PNAS 107, 19090-19095
   Abstract »    Full Text »    PDF »
Reproductive biology of female Bmal1 null mice.
M. J. Boden, T. J. Varcoe, A. Voultsios, and D. J. Kennaway (2010)
Reproduction 139, 1077-1090
   Abstract »    Full Text »    PDF »
A wheel of time: the circadian clock, nuclear receptors, and physiology.
X. Yang (2010)
Genes & Dev. 24, 741-747
   Abstract »    Full Text »    PDF »
AMP-Activated Protein Kinase-Deficient Mice Are Resistant to the Metabolic Effects of Resveratrol.
J.-H. Um, S.-J. Park, H. Kang, S. Yang, M. Foretz, M. W. McBurney, M. K. Kim, B. Viollet, and J. H. Chung (2010)
Diabetes 59, 554-563
   Abstract »    Full Text »    PDF »
Circadian Rhythms and Metabolic Syndrome: From Experimental Genetics to Human Disease.
E. Maury, K. M. Ramsey, and J. Bass (2010)
Circ. Res. 106, 447-462
   Abstract »    Full Text »    PDF »
Circadian Proteins and Genotoxic Stress Response.
M. P. Antoch and R. V. Kondratov (2010)
Circ. Res. 106, 68-78
   Abstract »    Full Text »    PDF »
Fat circadian biology.
J. M. Gimble and Z. E. Floyd (2009)
J Appl Physiol 107, 1629-1637
   Abstract »    Full Text »    PDF »
Epigenetic Inactivation of the Circadian Clock Gene BMAL1 in Hematologic Malignancies.
H. Taniguchi, A. F. Fernandez, F. Setien, S. Ropero, E. Ballestar, A. Villanueva, H. Yamamoto, K. Imai, Y. Shinomura, and M. Esteller (2009)
Cancer Res. 69, 8447-8454
   Abstract »    Full Text »    PDF »
Anticipating anticipation: pursuing identification of cardiomyocyte circadian clock function.
M. E. Young (2009)
J Appl Physiol 107, 1339-1347
   Abstract »    Full Text »    PDF »
Pressed for time: the circadian clock and hypertension.
R. D. Rudic and D. J. Fulton (2009)
J Appl Physiol 107, 1328-1338
   Abstract »    Full Text »    PDF »
A Phylogenetically Conserved DNA Damage Response Resets the Circadian Clock.
J. J. Gamsby, J. J. Loros, and J. C. Dunlap (2009)
J Biol Rhythms 24, 193-202
   Abstract »    PDF »
Circadian rhythms and memory: not so simple as cogs and gears.
K. L. Eckel-Mahan and D. R. Storm (2009)
EMBO Rep. 10, 584-591
   Abstract »    Full Text »    PDF »
The Circadian Clock Components CRY1 and CRY2 Are Necessary to Sustain Sex Dimorphism in Mouse Liver Metabolism.
I. M. Bur, A. M. Cohen-Solal, D. Carmignac, P.-Y. Abecassis, N. Chauvet, A. O. Martin, G. T. J. van der Horst, I. C. A. F. Robinson, P. Maurel, P. Mollard, et al. (2009)
J. Biol. Chem. 284, 9066-9073
   Abstract »    Full Text »    PDF »
Vascular Disease in Mice With a Dysfunctional Circadian Clock.
C. B. Anea, M. Zhang, D. W. Stepp, G. B. Simkins, G. Reed, D. J. Fulton, and R. D. Rudic (2009)
Circulation 119, 1510-1517
   Abstract »    Full Text »    PDF »
Loss of cryptochrome reduces cancer risk in p53 mutant mice.
N. Ozturk, J. H. Lee, S. Gaddameedhi, and A. Sancar (2009)
PNAS 106, 2841-2846
   Abstract »    Full Text »    PDF »
Increased Vascular Senescence and Impaired Endothelial Progenitor Cell Function Mediated by Mutation of Circadian Gene Per2.
C.-Y. Wang, M.-S. Wen, H.-W. Wang, I-C. Hsieh, Y. Li, P.-Y. Liu, F.-C. Lin, and J. K. Liao (2008)
Circulation 118, 2166-2173
   Abstract »    Full Text »    PDF »
Cannabis and lung cancer.
A. S. Reece (2008)
Eur. Respir. J. 32, 238-239
   Full Text »    PDF »
The Circadian Clock Protein BMAL1 Is Necessary for Fertility and Proper Testosterone Production in Mice.
J.D. Alvarez, A. Hansen, T. Ord, P. Bebas, P. E. Chappell, J. M. Giebultowicz, C. Williams, S. Moss, and A. Sehgal (2008)
J Biol Rhythms 23, 26-36
   Abstract »    PDF »
Peripheral Circadian Clocks in the Vasculature.
D. F. Reilly, E. J. Westgate, and G. A. FitzGerald (2007)
Arterioscler Thromb Vasc Biol 27, 1694-1705
   Abstract »    Full Text »    PDF »
The Clock Proteins, Aging, and Tumorigenesis.
R. V. Kondratov and M. P. Antoch (2007)
Cold Spring Harb Symp Quant Biol 72, 477-482
   Abstract »    PDF »
Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice..
E. L. McDearmon, K. N. Patel, C. H. Ko, J. A. Walisser, A. C. Schook, J. L. Chong, L. D. Wilsbacher, E. J. Song, H.-K. Hong, C. A. Bradfield, et al. (2006)
Science 314, 1304-1308
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882