Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Genes & Dev. 20 (16): 2202-2207

Copyright © 2006 by Cold Spring Harbor Laboratory Press.


RESEARCH COMMUNICATION

Extensive post-transcriptional regulation of microRNAs and its implications for cancer

J. Michael Thomson1, Martin Newman1, Joel S. Parker4, Elizabeth M. Morin-Kensicki1, Tricia Wright2, and Scott M. Hammond1,3,5

1 Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
2 Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
3 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
4 Constella Group, Durham, North Carolina 27713, USA

Abstract: MicroRNAs (miRNAs) are short, noncoding RNAs that post-transcriptionally regulate gene expression. While hundreds of mammalian miRNA genes have been identified, little is known about the pathways that regulate the production of active miRNA species. Here we show that a large fraction of miRNA genes are regulated post-transcriptionally. During early mouse development, many miRNA primary transcripts, including the Let-7 family, are present at high levels but are not processed by the enzyme Drosha. An analysis of gene expression in primary tumors indicates that the widespread down-regulation of miRNAs observed in cancer is due to a failure at the Drosha processing step. These data uncover a novel regulatory step in miRNA function and provide a mechanism for miRNA down-regulation in cancer.

Key Words: miRNA • microRNA • let-7 • RISC • Drosha • cancer

Received for publication April 27, 2006. Accepted for publication June 14, 2006.


5 Corresponding author.

E-MAIL hammond{at}med.unc.edu; FAX (919) 966-1856.

Supplemental material is available at http://www.genesdev.org.

Article published online ahead of print. Article and publication date are online at http://www.genesdev.org/cgi/doi/10.1101/gad.1444406.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Association of a peptoid ligand with the apical loop of pri-miR-21 inhibits cleavage by Drosha.
J. P. Diaz, R. Chirayil, S. Chirayil, M. Tom, K. J. Head, and K. J. Luebke (2014)
RNA 20, 528-539
   Abstract »    Full Text »    PDF »
Maturation of the Human Dorsolateral Prefrontal Cortex Coincides With a Dynamic Shift in MicroRNA Expression.
N. J. Beveridge, D. M. Santarelli, X. Wang, P. A. Tooney, M. J. Webster, C. S. Weickert, and M. J. Cairns (2014)
Schizophr Bull 40, 399-409
   Abstract »    Full Text »    PDF »
Induction of amphiregulin by p53 promotes apoptosis via control of microRNA biogenesis in response to DNA damage.
N. Taira, T. Yamaguchi, J. Kimura, Z.-G. Lu, S. Fukuda, S. Higashiyama, M. Ono, and K. Yoshida (2014)
PNAS 111, 717-722
   Abstract »    Full Text »    PDF »
Comparative study of microRNA profiling in keloid fibroblast and annotation of differential expressed microRNAs.
C. Li, Y. Bai, H. Liu, X. Zuo, H. Yao, Y. Xu, and M. Cao (2013)
Acta Biochim Biophys Sin 45, 692-699
   Abstract »    Full Text »    PDF »
RNA-protein analysis using a conditional CRISPR nuclease.
H. Y. Lee, R. E. Haurwitz, A. Apffel, K. Zhou, B. Smart, C. D. Wenger, S. Laderman, L. Bruhn, and J. A. Doudna (2013)
PNAS 110, 5416-5421
   Abstract »    Full Text »    PDF »
Signaling by p38 MAPK Stimulates Nuclear Localization of the Microprocessor Component p68 for Processing of Selected Primary MicroRNAs.
S. Hong, H. Noh, H. Chen, R. Padia, Z. K. Pan, S.-B. Su, Q. Jing, H.-F. Ding, and S. Huang (2013)
Science Signaling 6, ra16
   Abstract »    Full Text »    PDF »
MicroRNAs and respiratory diseases.
H. Rupani, T. Sanchez-Elsner, and P. Howarth (2013)
Eur. Respir. J. 41, 695-705
   Abstract »    Full Text »    PDF »
Potential of tumor-suppressive miR-596 targeting LGALS3BP as a therapeutic agent in oral cancer.
H. Endo, T. Muramatsu, M. Furuta, N. Uzawa, A. Pimkhaokham, T. Amagasa, J. Inazawa, and K.-i. Kozaki (2013)
Carcinogenesis 34, 560-569
   Abstract »    Full Text »    PDF »
T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire.
Y. Bronevetsky, A. V. Villarino, C. J. Eisley, R. Barbeau, A. J. Barczak, G. A. Heinz, E. Kremmer, V. Heissmeyer, M. T. McManus, D. J. Erle, et al. (2013)
J. Exp. Med. 210, 417-432
   Abstract »    Full Text »    PDF »
Tissue-specific control of brain-enriched miR-7 biogenesis.
N. R. Choudhury, F. de Lima Alves, L. de Andres-Aguayo, T. Graf, J. F. Caceres, J. Rappsilber, and G. Michlewski (2013)
Genes & Dev. 27, 24-38
   Abstract »    Full Text »    PDF »
Age-Dependent MicroRNA Control of Synaptic Plasticity in 22q11 Deletion Syndrome and Schizophrenia.
L. R. Earls, R. G. Fricke, J. Yu, R. B. Berry, L. T. Baldwin, and S. S. Zakharenko (2012)
J. Neurosci. 32, 14132-14144
   Abstract »    Full Text »    PDF »
Influenza A Virus Infection of Human Respiratory Cells Induces Primary MicroRNA Expression.
W. A. Buggele, K. E. Johnson, and C. M. Horvath (2012)
J. Biol. Chem. 287, 31027-31040
   Abstract »    Full Text »    PDF »
Microprocessor dynamics and interactions at endogenous imprinted C19MC microRNA genes.
C. Bellemer, M.-L. Bortolin-Cavaille, U. Schmidt, S. M. R. Jensen, J. Kjems, E. Bertrand, and J. Cavaille (2012)
J. Cell Sci. 125, 2709-2720
   Abstract »    Full Text »    PDF »
Lin-28 Homologue A (LIN28A) Promotes Cell Cycle Progression via Regulation of Cyclin-dependent Kinase 2 (CDK2), Cyclin D1 (CCND1), and Cell Division Cycle 25 Homolog A (CDC25A) Expression in Cancer.
N. Li, X. Zhong, X. Lin, J. Guo, L. Zou, J. L. Tanyi, Z. Shao, S. Liang, L.-P. Wang, W.-T. Hwang, et al. (2012)
J. Biol. Chem. 287, 17386-17397
   Abstract »    Full Text »    PDF »
Pri-miR-17-92a transcript folds into a tertiary structure and autoregulates its processing.
S. Chakraborty, S. Mehtab, A. Patwardhan, and Y. Krishnan (2012)
RNA 18, 1014-1028
   Abstract »    Full Text »    PDF »
Ectopic over-expression of tristetraprolin in human cancer cells promotes biogenesis of let-7 by down-regulation of Lin28.
C. W. Kim, M.-T. Vo, H. K. Kim, H. H. Lee, N. A. Yoon, B. J. Lee, Y. J. Min, W. D. Joo, H. J. Cha, J. W. Park, et al. (2012)
Nucleic Acids Res. 40, 3856-3869
   Abstract »    Full Text »    PDF »
MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review.
M. V. Iorio and C. M. Croce (2012)
EMBO Mol Med. 4, 143-159
   Abstract »    Full Text »    PDF »
The Long and Short of MicroRNAs in the Kidney.
J. Ho and J. A. Kreidberg (2012)
J. Am. Soc. Nephrol. 23, 400-404
   Abstract »    Full Text »    PDF »
Importance of the NCp7-like domain in the recognition of pre-let-7g by the pluripotency factor Lin28.
A. Desjardins, A. Yang, J. Bouvette, J. G. Omichinski, and P. Legault (2012)
Nucleic Acids Res. 40, 1767-1777
   Abstract »    Full Text »    PDF »
The enemy within: intronic miR-26b represses its host gene, ctdsp2, to regulate neurogenesis.
J. Han, A. M. Denli, and F. H. Gage (2012)
Genes & Dev. 26, 6-10
   Abstract »    Full Text »    PDF »
In vitro quantification of specific microRNA using molecular beacons.
M. B. Baker, G. Bao, and C. D. Searles (2012)
Nucleic Acids Res. 40, e13
   Abstract »    Full Text »    PDF »
The Regulatory Activities of Plant MicroRNAs: A More Dynamic Perspective.
Y. Meng, C. Shao, H. Wang, and M. Chen (2011)
Plant Physiology 157, 1583-1595
   Full Text »    PDF »
Deep sequencing of microRNA precursors reveals extensive 3' end modification.
M. A. Newman, V. Mani, and S. M. Hammond (2011)
RNA 17, 1795-1803
   Abstract »    Full Text »    PDF »
Musashi1 Cooperates in Abnormal Cell Lineage Protein 28 (Lin28)-mediated Let-7 Family MicroRNA Biogenesis in Early Neural Differentiation.
H. Kawahara, Y. Okada, T. Imai, A. Iwanami, P. S. Mischel, and H. Okano (2011)
J. Biol. Chem. 286, 16121-16130
   Abstract »    Full Text »    PDF »
Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing.
S. Melo, A. Villanueva, C. Moutinho, V. Davalos, R. Spizzo, C. Ivan, S. Rossi, F. Setien, O. Casanovas, L. Simo-Riudalbas, et al. (2011)
PNAS 108, 4394-4399
   Abstract »    Full Text »    PDF »
Emerging complexity of microRNA generation cascades.
H. I. Suzuki and K. Miyazono (2011)
J. Biochem. 149, 15-25
   Abstract »    Full Text »    PDF »
MicroRNAs in embryonic stem cell function and fate.
G. Tiscornia and J. C. Izpisua Belmonte (2010)
Genes & Dev. 24, 2732-2741
   Abstract »    Full Text »    PDF »
Double-Negative Feedback Loop between Reprogramming Factor LIN28 and microRNA let-7 Regulates Aldehyde Dehydrogenase 1-Positive Cancer Stem Cells.
X. Yang, X. Lin, X. Zhong, S. Kaur, N. Li, S. Liang, H. Lassus, L. Wang, D. Katsaros, K. Montone, et al. (2010)
Cancer Res. 70, 9463-9472
   Abstract »    Full Text »    PDF »
MicroRNA in Cancer: The Involvement of Aberrant MicroRNA Biogenesis Regulatory Pathways.
B. N. Davis-Dusenbery and A. Hata (2010)
Genes & Cancer 1, 1100-1114
   Abstract »    Full Text »    PDF »
microRNA Signature and Expression of Dicer and Drosha Can Predict Prognosis and Delineate Risk Groups in Neuroblastoma.
R.-J. Lin, Y.-C. Lin, J. Chen, H.-H. Kuo, Y.-Y. Chen, M. B. Diccianni, W. B. London, C.-H. Chang, and A. L. Yu (2010)
Cancer Res. 70, 7841-7850
   Abstract »    Full Text »    PDF »
DGCR8 recognizes primary transcripts of microRNAs through highly cooperative binding and formation of higher-order structures.
M. Faller, D. Toso, M. Matsunaga, I. Atanasov, R. Senturia, Y. Chen, Z. H. Zhou, and F. Guo (2010)
RNA 16, 1570-1583
   Abstract »    Full Text »    PDF »
MicroRNAs, macrocontrol: Regulation of miRNA processing.
I. Slezak-Prochazka, S. Durmus, B. J. Kroesen, and A. van den Berg (2010)
RNA 16, 1087-1095
   Abstract »    Full Text »    PDF »
Emerging paradigms of regulated microRNA processing.
M. A. Newman and S. M. Hammond (2010)
Genes & Dev. 24, 1086-1092
   Abstract »    Full Text »    PDF »
miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma.
M. Furuta, K. i. Kozaki, S. Tanaka, S. Arii, I. Imoto, and J. Inazawa (2010)
Carcinogenesis 31, 766-776
   Abstract »    Full Text »    PDF »
qPCR Profiling of Precursor and Mature MicroRNA.
T. D. Schmittgen (2010)
Am. Assoc. Cancer Res. Educ. Book 2010, 149-154
   Full Text »    PDF »
Malignant Germ Cell Tumors Display Common MicroRNA Profiles Resulting in Global Changes in Expression of Messenger RNA Targets.
R. D. Palmer, M. J. Murray, H. K. Saini, S. van Dongen, C. Abreu-Goodger, B. Muralidhar, M. R. Pett, C. M. Thornton, J. C. Nicholson, A. J. Enright, et al. (2010)
Cancer Res. 70, 2911-2923
   Abstract »    Full Text »    PDF »
MicroRNA-519c Suppresses Hypoxia-Inducible Factor-1{alpha} Expression and Tumor Angiogenesis.
S. T. Cha, P. S. Chen, G. Johansson, C. Y. Chu, M. Y. Wang, Y. M. Jeng, S. L. Yu, J. S. Chen, K. J. Chang, S. H. Jee, et al. (2010)
Cancer Res. 70, 2675-2685
   Abstract »    Full Text »    PDF »
LIN28 alters cell fate succession and acts independently of the let-7 microRNA during neurogliogenesis in vitro.
E. Balzer, C. Heine, Q. Jiang, V. M. Lee, and E. G. Moss (2010)
Development 137, 891-900
   Abstract »    Full Text »    PDF »
The role of let-7 in cell differentiation and cancer.
B. Boyerinas, S.-M. Park, A. Hau, A. E Murmann, and M. E Peter (2010)
Endocr. Relat. Cancer 17, F19-F36
   Abstract »    Full Text »    PDF »
Regulation of the MicroRNA Processor DGCR8 by the Tumor Suppressor ING1.
D. Gomez-Cabello, S. Callejas, A. Benguria, A. Moreno, J. Alonso, and I. Palmero (2010)
Cancer Res. 70, 1866-1874
   Abstract »    Full Text »    PDF »
Cross-mapping and the identification of editing sites in mature microRNAs in high-throughput sequencing libraries.
M. J.L. de Hoon, R. J. Taft, T. Hashimoto, M. Kanamori-Katayama, H. Kawaji, M. Kawano, M. Kishima, T. Lassmann, G. J. Faulkner, J. S. Mattick, et al. (2010)
Genome Res. 20, 257-264
   Abstract »    Full Text »    PDF »
Consensus miRNA expression profiles derived from interplatform normalization of microarray data.
R. Bargaje, M. Hariharan, V. Scaria, and B. Pillai (2010)
RNA 16, 16-25
   Abstract »    Full Text »    PDF »
NF{kappa}B p50-CCAAT/Enhancer-binding Protein {beta} (C/EBP{beta})-mediated Transcriptional Repression of MicroRNA let-7i following Microbial Infection.
S. P. O'Hara, P. L. Splinter, G. B. Gajdos, C. E. Trussoni, M. E. Fernandez-Zapico, X.-M. Chen, and N. F. LaRusso (2010)
J. Biol. Chem. 285, 216-225
   Abstract »    Full Text »    PDF »
MicroRNAs in Cancer: Small Molecules With a Huge Impact.
M. V. Iorio and C. M. Croce (2009)
J. Clin. Oncol. 27, 5848-5856
   Abstract »    Full Text »    PDF »
Dicer1 functions as a haploinsufficient tumor suppressor.
M. S. Kumar, R. E. Pester, C. Y. Chen, K. Lane, C. Chin, J. Lu, D. G. Kirsch, T. R. Golub, and T. Jacks (2009)
Genes & Dev. 23, 2700-2704
   Abstract »    Full Text »    PDF »
Myc-regulated microRNAs attenuate embryonic stem cell differentiation.
C.-H. Lin, A. L. Jackson, J. Guo, P. S. Linsley, and R. N. Eisenman (2009)
EMBO J. 28, 3157-3170
   Abstract »    Full Text »    PDF »
Phenotypic Plasticity of Adventitious Rooting in Arabidopsis Is Controlled by Complex Regulation of AUXIN RESPONSE FACTOR Transcripts and MicroRNA Abundance.
L. Gutierrez, J. D. Bussell, D. I. Pacurar, J. Schwambach, M. Pacurar, and C. Bellini (2009)
PLANT CELL 21, 3119-3132
   Abstract »    Full Text »    PDF »
The estrogen receptor-{alpha}-induced microRNA signature regulates itself and its transcriptional response.
L. Castellano, G. Giamas, J. Jacob, R. C. Coombes, W. Lucchesi, P. Thiruchelvam, G. Barton, L. R. Jiao, R. Wait, J. Waxman, et al. (2009)
PNAS 106, 15732-15737
   Abstract »    Full Text »    PDF »
MicroRNAs with a nucleolar location.
J. C. Ritland Politz, E. M. Hogan, and T. Pederson (2009)
RNA 15, 1705-1715
   Abstract »    Full Text »    PDF »
MicroRNAs in clinical oncology: at the crossroads between promises and problems.
S M Metias, E Lianidou, and G M Yousef (2009)
J. Clin. Pathol. 62, 771-776
   Abstract »    Full Text »    PDF »
LPS induces KH-type splicing regulatory protein-dependent processing of microRNA-155 precursors in macrophages.
T. Ruggiero, M. Trabucchi, F. De Santa, S. Zupo, B. D. Harfe, M. T. McManus, M. G. Rosenfeld, P. Briata, and R. Gherzi (2009)
FASEB J 23, 2898-2908
   Abstract »    Full Text »    PDF »
MicroRNA: a new frontier in kidney and blood pressure research.
M. Liang, Y. Liu, D. Mladinov, A. W. Cowley Jr., H. Trivedi, Y. Fang, X. Xu, X. Ding, and Z. Tian (2009)
Am J Physiol Renal Physiol 297, F553-F558
   Abstract »    Full Text »    PDF »
Hsp90 Regulates the Function of Argonaute 2 and Its Recruitment to Stress Granules and P-Bodies.
J. M. Pare, N. Tahbaz, J. Lopez-Orozco, P. LaPointe, P. Lasko, and T. C. Hobman (2009)
Mol. Biol. Cell 20, 3273-3284
   Abstract »    Full Text »    PDF »
High-resolution profiling and discovery of planarian small RNAs.
M. R. Friedlander, C. Adamidi, T. Han, S. Lebedeva, T. A. Isenbarger, M. Hirst, M. Marra, C. Nusbaum, W. L. Lee, J. C. Jenkin, et al. (2009)
PNAS 106, 11546-11551
   Abstract »    Full Text »    PDF »
Pathogenetic and Clinical Relevance of MicroRNAs in Colorectal Cancer.
N. VALERI, C. M. CROCE, and M. FABBRI (2009)
Cancer Genomics Proteomics 6, 195-204
   Abstract »    Full Text »    PDF »
The NF90-NF45 Complex Functions as a Negative Regulator in the MicroRNA Processing Pathway.
S. Sakamoto, K. Aoki, T. Higuchi, H. Todaka, K. Morisawa, N. Tamaki, E. Hatano, A. Fukushima, T. Taniguchi, and Y. Agata (2009)
Mol. Cell. Biol. 29, 3754-3769
   Abstract »    Full Text »    PDF »
Post-transcriptional control of DGCR8 expression by the Microprocessor.
R. Triboulet, H.-M. Chang, R. J. LaPierre, and R. I. Gregory (2009)
RNA 15, 1005-1011
   Abstract »    Full Text »    PDF »
Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells.
N. S. Wickramasinghe, T. T. Manavalan, S. M. Dougherty, K. A. Riggs, Y. Li, and C. M. Klinge (2009)
Nucleic Acids Res. 37, 2584-2595
   Abstract »    Full Text »    PDF »
Cell-cell contact globally activates microRNA biogenesis.
H.-W. Hwang, E. A. Wentzel, and J. T. Mendell (2009)
PNAS 106, 7016-7021
   Abstract »    Full Text »    PDF »
Diagnostic Assay Based on hsa-miR-205 Expression Distinguishes Squamous From Nonsquamous Non-Small-Cell Lung Carcinoma.
D. Lebanony, H. Benjamin, S. Gilad, M. Ezagouri, A. Dov, K. Ashkenazi, N. Gefen, S. Izraeli, G. Rechavi, H. Pass, et al. (2009)
J. Clin. Oncol. 27, 2030-2037
   Abstract »    Full Text »    PDF »
Downregulation of MiR-199a Derepresses Hypoxia-Inducible Factor-1{alpha} and Sirtuin 1 and Recapitulates Hypoxia Preconditioning in Cardiac Myocytes.
S. Rane, M. He, D. Sayed, H. Vashistha, A. Malhotra, J. Sadoshima, D. E. Vatner, S. F. Vatner, and M. Abdellatif (2009)
Circ. Res. 104, 879-886
   Abstract »    Full Text »    PDF »
2'-O-methylation stabilizes Piwi-associated small RNAs and ensures DNA elimination in Tetrahymena.
H. M. Kurth and K. Mochizuki (2009)
RNA 15, 675-685
   Abstract »    Full Text »    PDF »
The miR-17~92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma.
T. Uziel, F. V. Karginov, S. Xie, J. S. Parker, Y.-D. Wang, A. Gajjar, L. He, D. Ellison, R. J. Gilbertson, G. Hannon, et al. (2009)
PNAS 106, 2812-2817
   Abstract »    Full Text »    PDF »
Selective stabilization of mammalian microRNAs by 3' adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2.
T. Katoh, Y. Sakaguchi, K. Miyauchi, T. Suzuki, S.-i. Kashiwabara, T. Baba, and T. Suzuki (2009)
Genes & Dev. 23, 433-438
   Abstract »    Full Text »    PDF »
MicroRNA Microarray Identifies Let-7i as a Novel Biomarker and Therapeutic Target in Human Epithelial Ovarian Cancer.
N. Yang, S. Kaur, S. Volinia, J. Greshock, H. Lassus, K. Hasegawa, S. Liang, A. Leminen, S. Deng, L. Smith, et al. (2008)
Cancer Res. 68, 10307-10314
   Abstract »    Full Text »    PDF »
Single Nucleotide Polymorphisms of microRNA Machinery Genes Modify the Risk of Renal Cell Carcinoma.
Y. Horikawa, C. G. Wood, H. Yang, H. Zhao, Y. Ye, J. Gu, J. Lin, T. Habuchi, and X. Wu (2008)
Clin. Cancer Res. 14, 7956-7962
   Abstract »    Full Text »    PDF »
Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity.
N. J. Martinez, M. C. Ow, J. S. Reece-Hoyes, M. I. Barrasa, V. R. Ambros, and A. J.M. Walhout (2008)
Genome Res. 18, 2005-2015
   Abstract »    Full Text »    PDF »
let-7 regulates Dicer expression and constitutes a negative feedback loop.
S. Tokumaru, M. Suzuki, H. Yamada, M. Nagino, and T. Takahashi (2008)
Carcinogenesis 29, 2073-2077
   Abstract »    Full Text »    PDF »
Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production.
J. M. Pawlicki and J. A. Steitz (2008)
J. Cell Biol. 182, 61-76
   Abstract »    Full Text »    PDF »
An Insect Virus-Encoded MicroRNA Regulates Viral Replication.
M. Hussain, R. J. Taft, and S. Asgari (2008)
J. Virol. 82, 9164-9170
   Abstract »    Full Text »    PDF »
The FLYWCH transcription factors FLH-1, FLH-2, and FLH-3 repress embryonic expression of microRNA genes in C. elegans.
M. C. Ow, N. J. Martinez, P. H. Olsen, H. S. Silverman, M. I. Barrasa, B. Conradt, A. J.M. Walhout, and V. Ambros (2008)
Genes & Dev. 22, 2520-2534
   Abstract »    Full Text »    PDF »
Frequency and fate of microRNA editing in human brain.
Y. Kawahara, M. Megraw, E. Kreider, H. Iizasa, L. Valente, A. G. Hatzigeorgiou, and K. Nishikura (2008)
Nucleic Acids Res. 36, 5270-5280
   Abstract »    Full Text »    PDF »
Role of microRNAs in vascular diseases, inflammation, and angiogenesis.
C. Urbich, A. Kuehbacher, and S. Dimmeler (2008)
Cardiovasc Res 79, 581-588
   Abstract »    Full Text »    PDF »
Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing.
M. A. Newman, J. M. Thomson, and S. M. Hammond (2008)
RNA 14, 1539-1549
   Abstract »    Full Text »    PDF »
Genomic Profiling of MicroRNA and Messenger RNA Reveals Deregulated MicroRNA Expression in Prostate Cancer.
S. Ambs, R. L. Prueitt, M. Yi, R. S. Hudson, T. M. Howe, F. Petrocca, T. A. Wallace, C.-G. Liu, S. Volinia, G. A. Calin, et al. (2008)
Cancer Res. 68, 6162-6170
   Abstract »    Full Text »    PDF »
Diagnostic and Prognostic MicroRNAs in Stage II Colon Cancer.
T. Schepeler, J. T. Reinert, M. S. Ostenfeld, L. L. Christensen, A. N. Silahtaroglu, L. Dyrskjot, C. Wiuf, F. J. Sorensen, M. Kruhoffer, S. Laurberg, et al. (2008)
Cancer Res. 68, 6416-6424
   Abstract »    Full Text »    PDF »
Determinants of MicroRNA Processing Inhibition by the Developmentally Regulated RNA-binding Protein Lin28.
E. Piskounova, S. R. Viswanathan, M. Janas, R. J. LaPierre, G. Q. Daley, P. Sliz, and R. I. Gregory (2008)
J. Biol. Chem. 283, 21310-21314
   Abstract »    Full Text »    PDF »
Inducible expression of microRNA-194 is regulated by HNF-1{alpha} during intestinal epithelial cell differentiation.
K. Hino, K. Tsuchiya, T. Fukao, K. Kiga, R. Okamoto, T. Kanai, and M. Watanabe (2008)
RNA 14, 1433-1442
   Abstract »    Full Text »    PDF »
Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer.
L. Zhang, S. Volinia, T. Bonome, G. A. Calin, J. Greshock, N. Yang, C.-G. Liu, A. Giannakakis, P. Alexiou, K. Hasegawa, et al. (2008)
PNAS 105, 7004-7009
   Abstract »    Full Text »    PDF »
DEVELOPMENT: Deconstructing Pluripotency.
A. G. Bang and M. K. Carpenter (2008)
Science 320, 58-59
   Abstract »    Full Text »    PDF »
Selective Blockade of MicroRNA Processing by Lin28.
S. R. Viswanathan, G. Q. Daley, and R. I. Gregory (2008)
Science 320, 97-100
   Abstract »    Full Text »    PDF »
Exploration of Tumor-Suppressive MicroRNAs Silenced by DNA Hypermethylation in Oral Cancer.
K.-i. Kozaki, I. Imoto, S. Mogi, K. Omura, and J. Inazawa (2008)
Cancer Res. 68, 2094-2105
   Abstract »    Full Text »    PDF »
Gene Regulation by Transcription Factors and MicroRNAs.
O. Hobert (2008)
Science 319, 1785-1786
   Abstract »    Full Text »    PDF »
MicroRNA-137 Targets Microphthalmia-Associated Transcription Factor in Melanoma Cell Lines.
L. T. Bemis, R. Chen, C. M. Amato, E. H. Classen, S. E. Robinson, D. G. Coffey, P. F. Erickson, Y. G. Shellman, and W. A. Robinson (2008)
Cancer Res. 68, 1362-1368
   Abstract »    Full Text »    PDF »
Development of a Dual-Luciferase Reporter System for In Vivo Visualization of MicroRNA Biogenesis and Posttranscriptional Regulation.
J. Y. Lee, S. Kim, D. W. Hwang, J. M. Jeong, J.-K. Chung, M. C. Lee, and D. S. Lee (2008)
J. Nucl. Med. 49, 285-294
   Abstract »    Full Text »    PDF »
Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors.
E. J. Lee, M. Baek, Y. Gusev, D. J. Brackett, G. J. Nuovo, and T. D. Schmittgen (2008)
RNA 14, 35-42
   Abstract »    Full Text »    PDF »
MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression.
D. Y. Lee, Z. Deng, C.-H. Wang, and B. B. Yang (2007)
PNAS 104, 20350-20355
   Abstract »    Full Text »    PDF »
MicroRNAs as Potential Agents to Alter Resistance to Cytotoxic Anticancer Therapy.
J. B. Weidhaas, I. Babar, S. M. Nallur, P. Trang, S. Roush, M. Boehm, E. Gillespie, and F. J. Slack (2007)
Cancer Res. 67, 11111-11116
   Abstract »    Full Text »    PDF »
A simple array platform for microRNA analysis and its application in mouse tissues.
X. Tang, J. Gal, X. Zhuang, W. Wang, H. Zhu, and G. Tang (2007)
RNA 13, 1803-1822
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882