Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Genes & Dev. 20 (3): 276-281

Copyright © 2006 by Cold Spring Harbor Laboratory Press.


RESEARCH COMMUNICATION

Dual degradation signals control Gli protein stability and tumor formation

Erik G. Huntzicker1,3, Ivette S. Estay1,3, Hanson Zhen1, Ludmila A. Lokteva1, Peter K. Jackson2,3, and Anthony E. Oro1,3,4

1 Program in Epithelial Biology, 2 Department of Pathology, School of Medicine, and 3 Cancer Biology Graduate Program, Stanford University, Stanford, California 94305, USA

Abstract: Regulated protein destruction controls many key cellular processes with aberrant regulation increasingly found during carcinogenesis. Gli proteins mediate the transcriptional effects of the Sonic hedgehog pathway, which is implicated in up to 25% of human tumors. Here we show that Gli is rapidly destroyed by the proteasome and that mouse basal cell carcinoma induction correlates with Gli protein accumulation. We identify two independent destruction signals in Gli1, DN and DC, and show that removal of these signals stabilizes Gli1 protein and rapidly accelerates tumor formation in transgenic animals. These data argue that control of Gli protein accumulation underlies tumorigenesis and suggest a new avenue for antitumor therapy.

Key Words: Hedgehog • Gli • beta-TRCP • proteasome • basal cell carcinoma • hair follicle

Received for publication October 3, 2005. Accepted for publication December 1, 2005.


Supplemental material is available at http://www.genesdev.org.

Article published online ahead of print. Article and publication date are at http://www.genesdev.org/cgi/doi/10.1101/gad.1380906.

4 Corresponding author.

E-MAIL oro{at}cmgm.stanford.edu; FAX (650) 723-8762.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
A Functional Germline Variant in GLI1 Implicates Hedgehog Signaling in Clinical Outcome of Stage II and III Colon Carcinoma Patients.
J. Szkandera, M. Pichler, G. Absenger, M. Stotz, M. Weissmueller, H. Samonigg, M. Asslaber, S. Lax, G. Leitner, T. Winder, et al. (2014)
Clin. Cancer Res. 20, 1687-1697
   Abstract »    Full Text »    PDF »
A Distinct Smoothened Mutation Causes Severe Cerebellar Developmental Defects and Medulloblastoma in a Novel Transgenic Mouse Model.
J. Dey, S. Ditzler, S. E. Knoblaugh, B. A. Hatton, J. M. Schelter, M. A. Cleary, B. Mecham, L. B. Rorke-Adams, and J. M. Olson (2012)
Mol. Cell. Biol. 32, 4104-4115
   Abstract »    Full Text »    PDF »
Hedgehog Signaling Regulates Bladder Cancer Growth and Tumorigenicity.
D. L. Fei, A. Sanchez-Mejias, Z. Wang, C. Flaveny, J. Long, S. Singh, J. Rodriguez-Blanco, R. Tokhunts, C. Giambelli, K. J. Briegel, et al. (2012)
Cancer Res. 72, 4449-4458
   Abstract »    Full Text »    PDF »
Shh maintains dermal papilla identity and hair morphogenesis via a Noggin-Shh regulatory loop.
W.-M. Woo, H. H. Zhen, and A. E. Oro (2012)
Genes & Dev. 26, 1235-1246
   Abstract »    Full Text »    PDF »
A Three-part Signal Governs Differential Processing of Gli1 and Gli3 Proteins by the Proteasome.
E. K. Schrader, K. G. Harstad, R. A. Holmgren, and A. Matouschek (2011)
J. Biol. Chem. 286, 39051-39058
   Abstract »    Full Text »    PDF »
The Antagonistic Action of B56-containing Protein Phosphatase 2As and Casein Kinase 2 Controls the Phosphorylation and Gli Turnover Function of Daz Interacting Protein 1.
Z. Jin, W. Mei, S. Strack, J. Jia, and J. Yang (2011)
J. Biol. Chem. 286, 36171-36179
   Abstract »    Full Text »    PDF »
Regulation of mammalian Gli proteins by Costal 2 and PKA in Drosophila reveals Hedgehog pathway conservation.
S. A. Marks and D. Kalderon (2011)
Development 138, 2533-2542
   Abstract »    Full Text »    PDF »
Wounding mobilizes hair follicle stem cells to form tumors.
S. Y. Wong and J. F. Reiter (2011)
PNAS 108, 4093-4098
   Abstract »    Full Text »    PDF »
Mechanism and evolution of cytosolic Hedgehog signal transduction.
C. W. Wilson and P.-T. Chuang (2010)
Development 137, 2079-2094
   Abstract »    Full Text »    PDF »
Context-dependent Regulation of the GLI Code in Cancer by HEDGEHOG and Non-HEDGEHOG Signals.
B. Stecca and A. Ruiz i Altaba (2010)
J Mol Cell Biol 2, 84-95
   Abstract »    Full Text »    PDF »
Activation of Hedgehog Signaling by the Environmental Toxicant Arsenic May Contribute to the Etiology of Arsenic-Induced Tumors.
D. L. Fei, H. Li, C. D. Kozul, K. E. Black, S. Singh, J. A. Gosse, J. DiRenzo, K. A. Martin, B. Wang, J. W. Hamilton, et al. (2010)
Cancer Res. 70, 1981-1988
   Abstract »    Full Text »    PDF »
Multiple Ser/Thr-rich degrons mediate the degradation of Ci/Gli by the Cul3-HIB/SPOP E3 ubiquitin ligase.
Q. Zhang, Q. Shi, Y. Chen, T. Yue, S. Li, B. Wang, and J. Jiang (2009)
PNAS 106, 21191-21196
   Abstract »    Full Text »    PDF »
Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved.
M.-H. Chen, C. W. Wilson, Y.-J. Li, K. K. L. Law, C.-S. Lu, R. Gacayan, X. Zhang, C.-c. Hui, and P.-T. Chuang (2009)
Genes & Dev. 23, 1910-1928
   Abstract »    Full Text »    PDF »
The Kinesin Protein Kif7 Is a Critical Regulator of Gli Transcription Factors in Mammalian Hedgehog Signaling.
H. O.-L. Cheung, X. Zhang, A. Ribeiro, R. Mo, S. Makino, V. Puviindran, K. K. L. Law, J. Briscoe, and C.-c. Hui (2009)
Science Signaling 2, ra29
   Abstract »    Full Text »    PDF »
Activation of Hedgehog Signaling in Human Cancer: Basic Mechanisms and Clinical Implications.
J. Xie (2009)
Am. Assoc. Cancer Res. Educ. Book 2009, 25-41
   Full Text »    PDF »
A GLI1-p53 inhibitory loop controls neural stem cell and tumour cell numbers.
B. Stecca and A. Ruiz i Altaba (2009)
EMBO J. 28, 663-676
   Abstract »    Full Text »    PDF »
Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis.
H. Tian, C. A. Callahan, K. J. DuPree, W. C. Darbonne, C. P. Ahn, S. J. Scales, and F. J. de Sauvage (2009)
PNAS 106, 4254-4259
   Abstract »    Full Text »    PDF »
Protein Kinase C{delta} Negatively Regulates Hedgehog Signaling by Inhibition of Gli1 Activity.
Q. Cai, J. Li, T. Gao, J. Xie, and B. M. Evers (2009)
J. Biol. Chem. 284, 2150-2158
   Abstract »    Full Text »    PDF »
Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic hedgehog/Hes1 activity.
D. S. Wall, A. J. Mears, B. McNeill, C. Mazerolle, S. Thurig, Y. Wang, R. Kageyama, and V. A. Wallace (2009)
J. Cell Biol. 184, 101-112
   Abstract »    Full Text »    PDF »
A Crucial Role for Primary Cilia in Cortical Morphogenesis.
M. A. Willaredt, K. Hasenpusch-Theil, H. A. R. Gardner, I. Kitanovic, V. C. Hirschfeld-Warneken, C. P. Gojak, K. Gorgas, C. L. Bradford, J. Spatz, S. Wolfl, et al. (2008)
J. Neurosci. 28, 12887-12900
   Abstract »    Full Text »    PDF »
GLI2-specific Transcriptional Activation of the Bone Morphogenetic Protein/Activin Antagonist Follistatin in Human Epidermal Cells.
T. Eichberger, A. Kaser, C. Pixner, C. Schmid, S. Klingler, M. Winklmayr, C. Hauser-Kronberger, F. Aberger, and A.-M. Frischauf (2008)
J. Biol. Chem. 283, 12426-12437
   Abstract »    Full Text »    PDF »
GLI1 repression of ERK activity correlates with colony formation and impaired migration in human epidermal keratinocytes.
G. W. Neill, W. J. Harrison, M. S. Ikram, T. D.L. Williams, L. S. Bianchi, S. K. Nadendla, J. L. Green, L. Ghali, A.-M. Frischauf, E. A. O'Toole, et al. (2008)
Carcinogenesis 29, 738-746
   Abstract »    Full Text »    PDF »
A Novel Protein-processing Domain in Gli2 and Gli3 Differentially Blocks Complete Protein Degradation by the Proteasome.
Y. Pan and B. Wang (2007)
J. Biol. Chem. 282, 10846-10852
   Abstract »    Full Text »    PDF »
Thermodynamics of Neutral Protein Evolution.
J. D. Bloom, A. Raval, and C. O. Wilke (2007)
Genetics 175, 255-266
   Abstract »    Full Text »    PDF »
Selective Modulation of Hedgehog/GLI Target Gene Expression by Epidermal Growth Factor Signaling in Human Keratinocytes.
M. Kasper, H. Schnidar, G. W. Neill, M. Hanneder, S. Klingler, L. Blaas, C. Schmid, C. Hauser-Kronberger, G. Regl, M. P. Philpott, et al. (2006)
Mol. Cell. Biol. 26, 6283-6298
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882