Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Genes & Dev. 22 (23): 3268-3281

Copyright © 2008 by Cold Spring Harbor Laboratory Press.

Modular control of endothelial sheet migration

Philip Vitorino2, and Tobias Meyer1

Department of Chemical and Systems Biology, Bio-X Program, Stanford University, Stanford, California 94305, USA

Abstract: Growth factor-induced migration of endothelial cell monolayers enables embryonic development, wound healing, and angiogenesis. Although collective migration is widespread and therapeutically relevant, the underlying mechanism by which cell monolayers respond to growth factor, sense directional signals, induce motility, and coordinate individual cell movements is only partially understood. Here we used RNAi to identify 100 regulatory proteins that enhance or suppress endothelial sheet migration into cell-free space. We measured multiple live-cell migration parameters for all siRNA perturbations and found that each targeted protein primarily regulates one of four functional outputs: cell motility, directed migration, cell–cell coordination, or cell density. We demonstrate that cell motility regulators drive random, growth factor-independent motility in the presence or absence of open space. In contrast, directed migration regulators selectively transduce growth factor signals to direct cells along the monolayer boundary toward open space. Lastly, we found that regulators of cell–cell coordination are growth factor-independent and reorient randomly migrating cells inside the sheet when boundary cells begin to migrate. Thus, cells transition from random to collective migration through a modular control system, whereby growth factor signals convert boundary cells into pioneers, while cells inside the monolayer reorient and follow pioneers through growth factor-independent migration and cell–cell coordination.

Key Words: Collective migration • functional genomics • fibroblast growth factor • RNAi • signaling modules

Received for publication August 11, 2008. Accepted for publication October 7, 2008.


1 Correspondence.

E-MAIL tobias1{at}stanford.edu;_FAX (650) 723-2952.

2 E-MAIL vitorino{at}stanford.edu; FAX (650) 723-2952.

Supplemental material is available at http://www.genesdev.org.

Article is online at http://www.genesdev.org/cgi/doi/10.1101/gad.1725808.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Spatial constraints control cell proliferation in tissues.
S. J. Streichan, C. R. Hoerner, T. Schneidt, D. Holzer, and L. Hufnagel (2014)
PNAS 111, 5586-5591
   Abstract »    Full Text »    PDF »
Contact inhibition of locomotion probabilities drive solitary versus collective cell migration.
R. A. Desai, S. B. Gopal, S. Chen, and C. S. Chen (2013)
J R Soc Interface 10, 20130717
   Abstract »    Full Text »    PDF »
On fundamental cellular processes for emergence of collective epithelial movement.
T. Hirashima, Y. Hosokawa, T. Iino, and M. Nagayama (2013)
Biology Open 2, 660-666
   Abstract »    Full Text »    PDF »
Migration of cells in a social context.
S. Vedel, S. Tay, D. M. Johnston, H. Bruus, and S. R. Quake (2013)
PNAS 110, 129-134
   Abstract »    Full Text »    PDF »
Collective cell migration: leadership, invasion and segregation.
A. J. Kabla (2012)
J R Soc Interface 9, 3268-3278
   Abstract »    Full Text »    PDF »
Fellow travellers: emergent properties of collective cell migration.
P. Rorth (2012)
EMBO Rep. 13, 984-991
   Abstract »    Full Text »    PDF »
Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility.
M. R. Ng, A. Besser, G. Danuser, and J. S. Brugge (2012)
J. Cell Biol. 199, 545-563
   Abstract »    Full Text »    PDF »
Effective guidance of collective migration based on differences in cell states.
M. Inaki, S. Vishnu, A. Cliffe, and P. Rorth (2012)
PNAS 109, 2027-2032
   Abstract »    Full Text »    PDF »
Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement.
S. Arima, K. Nishiyama, T. Ko, Y. Arima, Y. Hakozaki, K. Sugihara, H. Koseki, Y. Uchijima, Y. Kurihara, and H. Kurihara (2011)
Development 138, 4763-4776
   Abstract »    Full Text »    PDF »
'White wave' analysis of epithelial scratch wound healing reveals how cells mobilise back from the leading edge in a myosin-II-dependent fashion.
Y. Matsubayashi, W. Razzell, and P. Martin (2011)
J. Cell Sci. 124, 1017-1021
   Abstract »    Full Text »    PDF »
Uncovering the behaviors of individual cells within a multicellular microvascular community.
H. Parsa, R. Upadhyay, and S. K. Sia (2011)
PNAS 108, 5133-5138
   Abstract »    Full Text »    PDF »
A Steering Model of Endothelial Sheet Migration Recapitulates Monolayer Integrity and Directed Collective Migration.
P. Vitorino, M. Hammer, J. Kim, and T. Meyer (2011)
Mol. Cell. Biol. 31, 342-350
   Abstract »    Full Text »    PDF »
A genome-wide RNAi screen identifies multiple RSK-dependent regulators of cell migration.
G. A. Smolen, J. Zhang, M. J. Zubrowski, E. J. Edelman, B. Luo, M. Yu, L. W. Ng, C. M. Scherber, B. J. Schott, S. Ramaswamy, et al. (2010)
Genes & Dev. 24, 2654-2665
   Abstract »    Full Text »    PDF »
A Targeted UAS-RNAi Screen in Drosophila Larvae Identifies Wound Closure Genes Regulating Distinct Cellular Processes.
C. Lesch, J. Jo, Y. Wu, G. S. Fish, and M. J. Galko (2010)
Genetics 186, 943-957
   Abstract »    Full Text »    PDF »
Adenomatous Polyposis Coli Regulates Endothelial Cell Migration Independent of Roles in {beta}-Catenin Signaling and Cell-Cell Adhesion.
E. S. Harris and W. J. Nelson (2010)
Mol. Biol. Cell 21, 2611-2623
   Abstract »    Full Text »    PDF »
Intercellular mechanotransduction during multicellular morphodynamics.
J. H. Kim, L. J. Dooling, and A. R. Asthagiri (2010)
J R Soc Interface 7, S341-S350
   Abstract »    Full Text »    PDF »
Extracellular matrix, inflammation, and the angiogenic response.
A. G. Arroyo and M. L. Iruela-Arispe (2010)
Cardiovasc Res 86, 226-235
   Abstract »    Full Text »    PDF »
Direct detection of guidance receptor activity during border cell migration.
K. Janssens, H.-H. Sung, and P. Rorth (2010)
PNAS 107, 7323-7328
   Abstract »    Full Text »    PDF »
{alpha}E-catenin regulates actin dynamics independently of cadherin-mediated cell-cell adhesion.
J. M. Benjamin, A. V. Kwiatkowski, C. Yang, F. Korobova, S. Pokutta, T. Svitkina, W. I. Weis, and W. J. Nelson (2010)
J. Cell Biol. 189, 339-352
   Abstract »    Full Text »    PDF »
Plasticity of cell migration: a multiscale tuning model.
P. Friedl and K. Wolf (2010)
J. Cell Biol. 188, 11-19
   Abstract »    Full Text »    PDF »
Mechanisms of collective cell migration at a glance.
O. Ilina and P. Friedl (2009)
J. Cell Sci. 122, 3203-3208
   Full Text »    PDF »
Mechanisms of Vessel Branching: Filopodia on Endothelial Tip Cells Lead the Way.
F. De Smet, I. Segura, K. De Bock, P. J. Hohensinner, and P. Carmeliet (2009)
Arterioscler Thromb Vasc Biol 29, 639-649
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882