Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Genes & Dev. 22 (7): 945-953

Copyright © 2008 by Cold Spring Harbor Laboratory Press.

Control of cell fate by the formation of an architecturally complex bacterial community

Hera Vlamakis1,3, Claudio Aguilar1,3, Richard Losick2,, and Roberto Kolter1,4

1 Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA;
2 Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA

Abstract: Bacteria form architecturally complex communities known as biofilms in which cells are held together by an extracellular matrix. Biofilms harbor multiple cell types, and it has been proposed that within biofilms individual cells follow different developmental pathways, resulting in heterogeneous populations. Here we demonstrate cellular differentiation within biofilms of the spore-forming bacterium Bacillus subtilis, and present evidence that formation of the biofilm governs differentiation. We show that motile, matrix-producing, and sporulating cells localize to distinct regions within the biofilm, and that the localization and percentage of each cell type is dynamic throughout development of the community. Importantly, mutants that do not produce extracellular matrix form unstructured biofilms that are deficient in sporulation. We propose that sporulation is a culminating feature of biofilm formation, and that spore formation is coupled to the formation of an architecturally complex community of cells.

Key Words: Bacillus • biofilm • cell fate • development • multicellularity]

Received for publication December 19, 2007. Accepted for publication February 6, 2008.


3 These authors contributed equally to this work.

4 Corresponding author.

E-MAIL rkolter{at}hms.harvard.edu; FAX (671) 738-7664.

Supplemental material is available at http://www.genesdev.org.

Article is online at http://www.genesdev.org/cgi/doi/10.1101/gad.1645008.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Information processing and signal integration in bacterial quorum sensing.
P. Mehta, S. Goyal, T. Long, B. L. Bassler, and N. S. Wingreen (2014)
Mol Syst Biol 5, 325
   Abstract »    Full Text »    PDF »
Functional Analysis of the Accessory Protein TapA in Bacillus subtilis Amyloid Fiber Assembly.
D. Romero, H. Vlamakis, R. Losick, and R. Kolter (2014)
J. Bacteriol. 196, 1505-1513
   Abstract »    Full Text »    PDF »
The protein tyrosine kinases EpsB and PtkA differentially affect biofilm formation in Bacillus subtilis.
J. Gerwig, T. B. Kiley, K. Gunka, N. Stanley-Wall, and J. Stulke (2014)
Microbiology 160, 682-691
   Abstract »    Full Text »    PDF »
Biofilm Matrix Exoproteins Induce a Protective Immune Response against Staphylococcus aureus Biofilm Infection.
C. Gil, C. Solano, S. Burgui, C. Latasa, B. Garcia, A. Toledo-Arana, I. Lasa, and J. Valle (2014)
Infect. Immun. 82, 1017-1029
   Abstract »    Full Text »    PDF »
Bacterial Competition Reveals Differential Regulation of the pks Genes by Bacillus subtilis.
C. Vargas-Bautista, K. Rahlwes, and P. Straight (2014)
J. Bacteriol. 196, 717-728
   Abstract »    Full Text »    PDF »
Phosphorylated DegU Manipulates Cell Fate Differentiation in the Bacillus subtilis Biofilm.
V. L. Marlow, M. Porter, L. Hobley, T. B. Kiley, J. R. Swedlow, F. A. Davidson, and N. R. Stanley-Wall (2014)
J. Bacteriol. 196, 16-27
   Abstract »    Full Text »    PDF »
The prevalence and origin of exoprotease-producing cells in the Bacillus subtilis biofilm.
V. L. Marlow, F. R. Cianfanelli, M. Porter, L. S. Cairns, J. K. Dale, and N. R. Stanley-Wall (2014)
Microbiology 160, 56-66
   Abstract »    Full Text »    PDF »
BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm.
L. Hobley, A. Ostrowski, F. V. Rao, K. M. Bromley, M. Porter, A. R. Prescott, C. E. MacPhee, D. M. F. van Aalten, and N. R. Stanley-Wall (2013)
PNAS 110, 13600-13605
   Abstract »    Full Text »    PDF »
Fungal adhesion protein guides community behaviors and autoinduction in a paracrine manner.
L. Wang, X. Tian, R. Gyawali, and X. Lin (2013)
PNAS 110, 11571-11576
   Abstract »    Full Text »    PDF »
Use of Microfluidic Technology To Analyze Gene Expression during Staphylococcus aureus Biofilm Formation Reveals Distinct Physiological Niches.
D. E. Moormeier, J. L. Endres, E. E. Mann, M. R. Sadykov, A. R. Horswill, K. C. Rice, P. D. Fey, and K. W. Bayles (2013)
Appl. Envir. Microbiol. 79, 3413-3424
   Abstract »    Full Text »    PDF »
A Plasmid-Encoded Phosphatase Regulates Bacillus subtilis Biofilm Architecture, Sporulation, and Genetic Competence.
V. Parashar, M. A. Konkol, D. B. Kearns, and M. B. Neiditch (2013)
J. Bacteriol. 195, 2437-2448
   Abstract »    Full Text »    PDF »
6S-1 RNA Function Leads to a Delay in Sporulation in Bacillus subtilis.
A. T. Cavanagh and K. M. Wassarman (2013)
J. Bacteriol. 195, 2079-2086
   Abstract »    Full Text »    PDF »
Bacillus subtilis biofilm induction by plant polysaccharides.
P. B. Beauregard, Y. Chai, H. Vlamakis, R. Losick, and R. Kolter (2013)
PNAS 110, E1621-E1630
   Abstract »    Full Text »    PDF »
Microanatomy at Cellular Resolution and Spatial Order of Physiological Differentiation in a Bacterial Biofilm.
D. O. Serra, A. M. Richter, G. Klauck, F. Mika, and R. Hengge (2013)
mBio 4, e00103-13
   Abstract »    Full Text »    PDF »
Strong inter-population cooperation leads to partner intermixing in microbial communities.
B. Momeni, K. A. Brileya, M. W. Fields, and W. Shou (2013)
eLife Sci 2, e00230
   Abstract »    Full Text »    PDF »
Localized cell death focuses mechanical forces during 3D patterning in a biofilm.
M. Asally, M. Kittisopikul, P. Rue, Y. Du, Z. Hu, T. Cagatay, A. B. Robinson, H. Lu, J. Garcia-Ojalvo, and G. M. Suel (2012)
PNAS 109, 18891-18896
   Abstract »    Full Text »    PDF »
Culture History and Population Heterogeneity as Determinants of Bacterial Adaptation: the Adaptomics of a Single Environmental Transition.
B. Ryall, G. Eydallin, and T. Ferenci (2012)
Microbiol. Mol. Biol. Rev. 76, 597-625
   Abstract »    Full Text »    PDF »
Liquid-infused structured surfaces with exceptional anti-biofouling performance.
A. K. Epstein, T.-S. Wong, R. A. Belisle, E. M. Boggs, and J. Aizenberg (2012)
PNAS 109, 13182-13187
   Abstract »    Full Text »    PDF »
Bacterial swimmers that infiltrate and take over the biofilm matrix.
A. Houry, M. Gohar, J. Deschamps, E. Tischenko, S. Aymerich, A. Gruss, and R. Briandet (2012)
PNAS 109, 13088-13093
   Abstract »    Full Text »    PDF »
Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix.
A. Seminara, T. E. Angelini, J. N. Wilking, H. Vlamakis, S. Ebrahim, R. Kolter, D. A. Weitz, and M. P. Brenner (2012)
PNAS 109, 1116-1121
   Abstract »    Full Text »    PDF »
Interspecies interactions that result in Bacillus subtilis forming biofilms are mediated mainly by members of its own genus.
E. A. Shank, V. Klepac-Ceraj, L. Collado-Torres, G. E. Powers, R. Losick, and R. Kolter (2011)
PNAS 108, E1236-E1243
   Abstract »    Full Text »    PDF »
YuaB Functions Synergistically with the Exopolysaccharide and TasA Amyloid Fibers To Allow Biofilm Formation by Bacillus subtilis.
A. Ostrowski, A. Mehert, A. Prescott, T. B. Kiley, and N. R. Stanley-Wall (2011)
J. Bacteriol. 193, 4821-4831
   Abstract »    Full Text »    PDF »
Single-cell analysis in situ in a Bacillus subtilis swarming community identifies distinct spatially separated subpopulations differentially expressing hag (flagellin), including specialized swarmers.
K. Hamze, S. Autret, K. Hinc, S. Laalami, D. Julkowska, R. Briandet, M. Renault, C. Absalon, I. B. Holland, H. Putzer, et al. (2011)
Microbiology 157, 2456-2469
   Abstract »    Full Text »    PDF »
Evidence that metabolism and chromosome copy number control mutually exclusive cell fates in Bacillus subtilis.
Y. Chai, T. Norman, R. Kolter, and R. Losick (2011)
EMBO J. 30, 1402-1413
   Abstract »    Full Text »    PDF »
Spatial Regulation of Histidine Kinases Governing Biofilm Formation in Bacillus subtilis.
A. L. McLoon, I. Kolodkin-Gal, S. M. Rubinstein, R. Kolter, and R. Losick (2011)
J. Bacteriol. 193, 679-685
   Abstract »    Full Text »    PDF »
The Biocide Chlorine Dioxide Stimulates Biofilm Formation in Bacillus subtilis by Activation of the Histidine Kinase KinC.
M. Shemesh, R. Kolter, and R. Losick (2010)
J. Bacteriol. 192, 6352-6356
   Abstract »    Full Text »    PDF »
Biofilms.
D. Lopez, H. Vlamakis, and R. Kolter (2010)
Cold Spring Harb Perspect Biol 2, a000398
   Abstract »    Full Text »    PDF »
Enzymatic Hydrolysis of Trehalose Dimycolate Releases Free Mycolic Acids during Mycobacterial Growth in Biofilms.
A. K. Ojha, X. Trivelli, Y. Guerardel, L. Kremer, and G. F. Hatfull (2010)
J. Biol. Chem. 285, 17380-17389
   Abstract »    Full Text »    PDF »
KinD Is a Checkpoint Protein Linking Spore Formation to Extracellular-Matrix Production in Bacillus subtilis Biofilms.
C. Aguilar, H. Vlamakis, A. Guzman, R. Losick, and R. Kolter (2010)
mBio 1, e00035-10
   Abstract »    Full Text »    PDF »
D-Amino Acids Trigger Biofilm Disassembly.
I. Kolodkin-Gal, D. Romero, S. Cao, J. Clardy, R. Kolter, and R. Losick (2010)
Science 328, 627-629
   Abstract »    Full Text »    PDF »
An epigenetic switch governing daughter cell separation in Bacillus subtilis.
Y. Chai, T. Norman, R. Kolter, and R. Losick (2010)
Genes & Dev. 24, 754-765
   Abstract »    Full Text »    PDF »
Involvement of motility and flagella in Bacillus cereus biofilm formation.
A. Houry, R. Briandet, S. Aymerich, and M. Gohar (2010)
Microbiology 156, 1009-1018
   Abstract »    Full Text »    PDF »
Amyloid fibers provide structural integrity to Bacillus subtilis biofilms.
D. Romero, C. Aguilar, R. Losick, and R. Kolter (2010)
PNAS 107, 2230-2234
   Abstract »    Full Text »    PDF »
Bacterial strategies for chemotaxis response.
A. Celani and M. Vergassola (2010)
PNAS 107, 1391-1396
   Abstract »    Full Text »    PDF »
Bistable Expression of CsgD in Biofilm Development of Salmonella enterica Serovar Typhimurium.
N. Grantcharova, V. Peters, C. Monteiro, K. Zakikhany, and U. Romling (2010)
J. Bacteriol. 192, 456-466
   Abstract »    Full Text »    PDF »
{sigma}X Is Involved in Controlling Bacillus subtilis Biofilm Architecture through the AbrB Homologue Abh.
E. J. Murray, M. A. Strauch, and N. R. Stanley-Wall (2009)
J. Bacteriol. 191, 6822-6832
   Abstract »    Full Text »    PDF »
Bacillus subtilis spreads by surfing on waves of surfactant.
T. E. Angelini, M. Roper, R. Kolter, D. A. Weitz, and M. P. Brenner (2009)
PNAS 106, 18109-18113
   Abstract »    Full Text »    PDF »
Paracrine signaling in a bacterium.
D. Lopez, H. Vlamakis, R. Losick, and R. Kolter (2009)
Genes & Dev. 23, 1631-1638
   Abstract »    Full Text »    PDF »
RemA (YlzA) and RemB (YaaB) Regulate Extracellular Matrix Operon Expression and Biofilm Formation in Bacillus subtilis.
J. T. Winkelman, K. M. Blair, and D. B. Kearns (2009)
J. Bacteriol. 191, 3981-3991
   Abstract »    Full Text »    PDF »
Complexity in bacterial cell-cell communication: Quorum signal integration and subpopulation signaling in the Bacillus subtilis phosphorelay.
I. B. Bischofs, J. A. Hug, A. W. Liu, D. M. Wolf, and A. P. Arkin (2009)
PNAS 106, 6459-6464
   Abstract »    Full Text »    PDF »
A Widely Conserved Gene Cluster Required for Lactate Utilization in Bacillus subtilis and Its Involvement in Biofilm Formation.
Y. Chai, R. Kolter, and R. Losick (2009)
J. Bacteriol. 191, 2423-2430
   Abstract »    Full Text »    PDF »
Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis.
D. Lopez, M. A. Fischbach, F. Chu, R. Losick, and R. Kolter (2009)
PNAS 106, 280-285
   Abstract »    Full Text »    PDF »
A pivotal role for the response regulator DegU in controlling multicellular behaviour.
E. J. Murray, T. B. Kiley, and N. R. Stanley-Wall (2009)
Microbiology 155, 1-8
   Abstract »    Full Text »    PDF »
DegU and Spo0A Jointly Control Transcription of Two Loci Required for Complex Colony Development by Bacillus subtilis.
D. T. Verhamme, E. J. Murray, and N. R. Stanley-Wall (2009)
J. Bacteriol. 191, 100-108
   Abstract »    Full Text »    PDF »
The 52nd Annual Wind River Conference on Prokaryotic Biology--2008.
E. Mann, M. A Zaunbrecher, K. Hitz, and G. Churchward (2008)
J. Bacteriol. 190, 7871-7875
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882