Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Genes & Dev. 23 (16): 1971-1979

Copyright © 2009 by Cold Spring Harbor Laboratory Press.

Cell contact-dependent acquisition of cellular and viral nonautonomously encoded small RNAs

Oded Rechavi1,4, Yaniv Erlich2,4, Hila Amram3,4, Lena Flomenblit3, Fedor V. Karginov2, Itamar Goldstein3, Gregory J. Hannon2,5,, and Yoel Kloog1,6

1 Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel;
2 Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
3 Immunology Program, Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer, and Sackler School of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel

Abstract: In some organisms, small RNA pathways can act nonautonomously, with responses spreading from cell to cell. Dedicated intercellular RNA delivery pathways have not yet been characterized in mammals, although secretory compartments have been found to contain RNA. Here we show that, upon cell contact, T cells acquire from B cells small RNAs that can impact the expression of target genes in the recipient T cells. Synthetic microRNA (miRNA) mimetics, viral miRNAs expressed by infected B cells, and endogenous miRNAs could all be transferred into T cells. These mechanisms may allow small RNA-mediated communication between immune cells. The documented transfer of viral miRNAs raises the possible exploitation of these pathways for viral manipulation of the host immune response.

Key Words: microRNA • shRNA • intercellular transfer • immunity

Received for publication February 7, 2009. Accepted for publication July 2, 2009.


4 These authors contributed equally to this work.

5 Corresponding authors.

E-MAIL hannon{at}cshl.edu; FAX (516) 367-8874.

6 E-MAIL kloog{at}post.tau.ac.il; FAX 972-3-6407643.

Article is online at http://www.genesdev.org/cgi/doi/10.1101/gad.1789609.

Supplemental material is available at http://www.genesdev.org.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Traffic into silence: endomembranes and post-transcriptional RNA silencing.
Y. J. Kim, A. Maizel, and X. Chen (2014)
EMBO J.
   Abstract »    Full Text »    PDF »
MicroRNAs Transfer from Human Macrophages to Hepato-Carcinoma Cells and Inhibit Proliferation.
A. Aucher, D. Rudnicka, and D. M. Davis (2013)
J. Immunol. 191, 6250-6260
   Abstract »    Full Text »    PDF »
Role of bacterial infections in pancreatic cancer.
D. S. Michaud (2013)
Carcinogenesis 34, 2193-2197
   Abstract »    Full Text »    PDF »
Ras Oncoproteins Transfer from Melanoma Cells to T Cells and Modulate Their Effector Functions.
H. Vernitsky, O. Rechavi, N. Rainy, M. J. Besser, M. Nagar, J. Schachter, Y. Lerenthal, M. Ehrlich, Y. Kloog, and I. Goldstein (2012)
J. Immunol. 189, 4361-4370
   Abstract »    Full Text »    PDF »
Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi).
Q. Pan, V. Ramakrishnaiah, S. Henry, S. Fouraschen, P. E. de Ruiter, J. Kwekkeboom, H. W. Tilanus, H. L. A. Janssen, and L. J. W. van der Laan (2012)
Gut 61, 1330-1339
   Abstract »    Full Text »    PDF »
Homo sapiens Systemic RNA Interference-defective-1 Transmembrane Family Member 1 (SIDT1) Protein Mediates Contact-dependent Small RNA Transfer and MicroRNA-21-driven Chemoresistance.
M. O. Elhassan, J. Christie, and M. S. Duxbury (2012)
J. Biol. Chem. 287, 5267-5277
   Abstract »    Full Text »    PDF »
Critical Reevaluation of Endothelial Progenitor Cell Phenotypes for Therapeutic and Diagnostic Use.
G. P. Fadini, D. Losordo, and S. Dimmeler (2012)
Circ. Res. 110, 624-637
   Abstract »    Full Text »    PDF »
MicroRNAs are shaping the hematopoietic landscape.
U. Bissels, A. Bosio, and W. Wagner (2012)
Haematologica 97, 160-167
   Abstract »    Full Text »    PDF »
A Three-Dimensional RNA Motif in Potato spindle tuber viroid Mediates Trafficking from Palisade Mesophyll to Spongy Mesophyll in Nicotiana benthamiana.
R. Takeda, A. I. Petrov, N. B. Leontis, and B. Ding (2011)
PLANT CELL 23, 258-272
   Abstract »    Full Text »    PDF »
Secretory Mechanisms and Intercellular Transfer of MicroRNAs in Living Cells.
N. Kosaka, H. Iguchi, Y. Yoshioka, F. Takeshita, Y. Matsuki, and T. Ochiya (2010)
J. Biol. Chem. 285, 17442-17452
   Abstract »    Full Text »    PDF »
Functional delivery of viral miRNAs via exosomes.
D. M. Pegtel, K. Cosmopoulos, D. A. Thorley-Lawson, M. A. J. van Eijndhoven, E. S. Hopmans, J. L. Lindenberg, T. D. de Gruijl, T. Wurdinger, and J. M. Middeldorp (2010)
PNAS 107, 6328-6333
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882