Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Genes & Dev. 24 (22): 2517-2530

Copyright © 2010 by Cold Spring Harbor Laboratory Press.

Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors

Luca Grumolato1, Guizhong Liu1, Phyllus Mong1, Raksha Mudbhary1, Romi Biswas1, Randy Arroyave1, Sapna Vijayakumar1, Aris N. Economides2,, and Stuart A. Aaronson1,3

1 Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA;
2 Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, USA

Abstract: Wnt ligands signal through β-catenin and are critically involved in cell fate determination and stem/progenitor self-renewal. Wnts also signal through β-catenin-independent or noncanonical pathways that regulate crucial events during embryonic development. The mechanism of noncanonical receptor activation and how Wnts trigger canonical as opposed to noncanonical signaling have yet to be elucidated. We demonstrate here that prototype canonical Wnt3a and noncanonical Wnt5a ligands specifically trigger completely unrelated endogenous coreceptors—LRP5/6 and Ror1/2, respectively—through a common mechanism that involves their Wnt-dependent coupling to the Frizzled (Fzd) coreceptor and recruitment of shared components, including dishevelled (Dvl), axin, and glycogen synthase kinase 3 (GSK3). We identify Ror2 Ser 864 as a critical residue phosphorylated by GSK3 and required for noncanonical receptor activation by Wnt5a, analogous to the priming phosphorylation of low-density receptor-related protein 6 (LRP6) in response to Wnt3a. Furthermore, this mechanism is independent of Ror2 receptor Tyr kinase functions. Consistent with this model of Wnt receptor activation, we provide evidence that canonical and noncanonical Wnts exert reciprocal pathway inhibition at the cell surface by competition for Fzd binding. Thus, different Wnts, through their specific coupling and phosphorylation of unrelated coreceptors, activate completely distinct signaling pathways.

Key Words: Ror1/2 • LRP5/6 • Wnt3a • Wnt5a • receptor activation • noncanonical Wnt signaling

Received for publication June 8, 2010. Accepted for publication September 20, 2010.

3 Corresponding author.

E-MAIL stuart.aaronson{at}; FAX (212) 987-2240.

Article is online at

Supplemental material is available at

Gene-expression analysis of hair cell regeneration in the zebrafish lateral line.
L. Jiang, A. Romero-Carvajal, J. S. Haug, C. W. Seidel, and T. Piotrowski (2014)
PNAS 111, E1383-E1392
   Abstract »    Full Text »    PDF »
Glypican-3 binds to Frizzled and plays a direct role in the stimulation of canonical Wnt signaling.
M. Capurro, T. Martin, W. Shi, and J. Filmus (2014)
J. Cell Sci. 127, 1565-1575
   Abstract »    Full Text »    PDF »
The Role of Ryk and Ror Receptor Tyrosine Kinases in Wnt Signal Transduction.
J. Green, R. Nusse, and R. van Amerongen (2014)
Cold Spring Harb Perspect Biol 6, a009175
   Abstract »    Full Text »    PDF »
The rationale for targeted therapies in medulloblastoma.
T. J. MacDonald, D. Aguilera, and R. C. Castellino (2014)
Neuro Oncology 16, 9-20
   Abstract »    Full Text »    PDF »
Transcriptome Analysis of the Dihydrotestosterone-Exposed Fetal Rat Gubernaculum Identifies Common Androgen and Insulin-Like 3 Targets.
J. S. Barthold, Y. Wang, A. Robbins, J. Pike, E. McDowell, K. J. Johnson, and S. M. McCahan (2013)
Biol Reprod 89, 143
   Abstract »    Full Text »    PDF »
Dexamethasone Induces Cross-Linked Actin Networks in Trabecular Meshwork Cells Through Noncanonical Wnt Signaling.
Y. Yuan, M. K. Call, Y. Yuan, Y. Zhang, K. Fischesser, C.-Y. Liu, and W. W.- Y. Kao (2013)
Invest. Ophthalmol. Vis. Sci. 54, 6502-6509
   Abstract »    Full Text »    PDF »
Receptor Tyrosine Kinases in the Nucleus.
G. Carpenter and H.-J. Liao (2013)
Cold Spring Harb Perspect Biol 5, a008979
   Abstract »    Full Text »    PDF »
Mutually exclusive signaling signatures define the hepatic and pancreatic progenitor cell lineage divergence.
E. Rodriguez-Seguel, N. Mah, H. Naumann, I. M. Pongrac, N. Cerda-Esteban, J.-F. Fontaine, Y. Wang, W. Chen, M. A. Andrade-Navarro, and F. M. Spagnoli (2013)
Genes & Dev. 27, 1932-1946
   Abstract »    Full Text »    PDF »
Canonical Wnt Signaling Is Required for Pancreatic Carcinogenesis.
Y. Zhang, J. P. Morris IV, W. Yan, H. K. Schofield, A. Gurney, D. M. Simeone, S. E. Millar, T. Hoey, M. Hebrok, and M. Pasca di Magliano (2013)
Cancer Res. 73, 4909-4922
   Abstract »    Full Text »    PDF »
Receptor Tyrosine Kinases in Drosophila Development.
R. Sopko and N. Perrimon (2013)
Cold Spring Harb Perspect Biol 5, a009050
   Abstract »    Full Text »    PDF »
Clathrin and AP2 are required for PtdIns(4,5)P2-mediated formation of LRP6 signalosomes.
I. Kim, W. Pan, S. A. Jones, Y. Zhang, X. Zhuang, and D. Wu (2013)
J. Cell Biol. 200, 419-428
   Abstract »    Full Text »    PDF »
Wnt Signaling in Vertebrate Axis Specification.
H. Hikasa and S. Y. Sokol (2013)
Cold Spring Harb Perspect Biol 5, a007955
   Abstract »    Full Text »    PDF »
Wnt5a Potentiates TGF-{beta} Signaling to Promote Colonic Crypt Regeneration After Tissue Injury.
H. Miyoshi, R. Ajima, C. T. Luo, T. P. Yamaguchi, and T. S. Stappenbeck (2012)
Science 338, 108-113
   Abstract »    Full Text »    PDF »
Characterization of the Interaction of Sclerostin with the Low Density Lipoprotein Receptor-related Protein (LRP) Family of Wnt Co-receptors.
G. Holdsworth, P. Slocombe, C. Doyle, B. Sweeney, V. Veverka, K. Le Riche, R. J. Franklin, J. Compson, D. Brookings, J. Turner, et al. (2012)
J. Biol. Chem. 287, 26464-26477
   Abstract »    Full Text »    PDF »
Structural Basis of Wnt Recognition by Frizzled.
C. Y. Janda, D. Waghray, A. M. Levin, C. Thomas, and K. C. Garcia (2012)
Science 337, 59-64
   Abstract »    Full Text »    PDF »
Genome-wide occupancy links Hoxa2 to Wnt-{beta}-catenin signaling in mouse embryonic development.
I. J. Donaldson, S. Amin, J. J. Hensman, E. Kutejova, M. Rattray, N. Lawrence, A. Hayes, C. M. Ward, and N. Bobola (2012)
Nucleic Acids Res. 40, 3990-4001
   Abstract »    Full Text »    PDF »
Ror family receptor tyrosine kinases regulate the maintenance of neural progenitor cells in the developing neocortex.
M. Endo, R. Doi, M. Nishita, and Y. Minami (2012)
J. Cell Sci. 125, 2017-2029
   Abstract »    Full Text »    PDF »
Cross-talk between Insulin and Wnt Signaling in Preadipocytes: ROLE OF WNT CO-RECEPTOR LOW DENSITY LIPOPROTEIN RECEPTOR-RELATED PROTEIN-5 (LRP5).
J. Palsgaard, B. Emanuelli, J. N. Winnay, G. Sumara, G. Karsenty, and C. R. Kahn (2012)
J. Biol. Chem. 287, 12016-12026
   Abstract »    Full Text »    PDF »
Wnt5a-Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis.
H.-Y. H. Ho, M. W. Susman, J. B. Bikoff, Y. K. Ryu, A. M. Jonas, L. Hu, R. Kuruvilla, and M. E. Greenberg (2012)
PNAS 109, 4044-4051
   Abstract »    Full Text »    PDF »
Neural crest specification by noncanonical Wnt signaling and PAR-1.
O. Ossipova and S. Y. Sokol (2011)
Development 138, 5441-5450
   Abstract »    Full Text »    PDF »
Disc1 regulates both {beta}-catenin-mediated and noncanonical Wnt signaling during vertebrate embryogenesis.
G. De Rienzo, J. A. Bishop, Y. Mao, L. Pan, T. P. Ma, C. B. Moens, L.-H. Tsai, and H. Sive (2011)
FASEB J 25, 4184-4197
   Abstract »    Full Text »    PDF »
Wnt/Ca2+ signaling pathway: a brief overview.
A. De (2011)
Acta Biochim Biophys Sin 43, 745-756
   Abstract »    Full Text »    PDF »
Off-track takes Frizzled off the canonical path.
J.-P. Vincent and K. Beckett (2011)
EMBO J. 30, 3665-3666
   Abstract »    Full Text »    PDF »
Generating a Wnt switch: it's all about the right dosage.
H. A. Kestler and M. Kuhl (2011)
J. Cell Biol. 193, 431-433
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882