Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Biol. Chem. 276 (23): 20093-20100

© 2001 by The American Society for Biochemistry and Molecular Biology, Inc.

Regulation of Human CLC-3 Channels by Multifunctional Ca2+/Calmodulin-dependent Protein Kinase*

Ping HuangDagger , Jie LiuDagger , Anke Di, Nicole C. Robinson, Mark W. Musch§, Marcia A. Kaetzel, and Deborah J. Nelson||

From the Department of Neurobiology, Pharmacology and Physiology, § IBD Research Center and Department of Medicine, The University of Chicago, Chicago, Illinois 60637 and the  Department of Molecular & Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267

The multifunctional calcium/calmodulin-dependent protein kinase II, CaMKII, has been shown to regulate chloride movement and cellular function in both excitable and non-excitable cells. We show that the plasma membrane expression of a member of the ClC family of Cl- channels, human CLC-3 (hCLC-3), a 90-kDa protein, is regulated by CaMKII. We cloned the full-length hCLC-3 gene from the human colonic tumor cell line T84, previously shown to express a CaMKII-activated Cl- conductance (ICl,CaMKII), and transfected this gene into the mammalian epithelial cell line tsA, which lacks endogenous expression of ICl,CaMKII. Biotinylation experiments demonstrated plasma membrane expression of hCLC-3 in the stably transfected cells. In whole cell patch clamp experiments, autonomously active CaMKII was introduced into tsA cells stably transfected with hCLC-3 via the patch pipette. Cells transfected with the hCLC-3 gene showed a 22-fold increase in current density over cells expressing the vector alone. Kinase-dependent current expression was abolished in the presence of the autocamtide-2-related inhibitory peptide, a specific inhibitor of CaMKII. A mutation of glycine 280 to glutamic acid in the conserved motif in the putative pore region of the channel changed anion selectivity from I- > Cl- to Cl- > I-. These results indicate that hCLC-3 encodes a Cl- channel that is regulated by CaMKII-dependent phosphorylation.


* This work was supported by National Institutes of Health Grant GM36823 and a grant from the Cystic Fibrosis Foundation (Nelson96PO) (to D. J. N.), National Institutes of Health Grant DK46433 (to M. A. K.), National Institutes of Health Digestive Disease Core Grant DK-42086 and The Caroline Halfter Spahn Trust.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

This work is dedicated to the fond memory of Wellesley Anne Johnson.

The nucleotide sequence(s) reported in this paper has been submitted to the GenBankTM/EMBL Data Bank with accession number(s) AF172729.

Dagger Contributed equally to the results of this work.

|| To whom correspondence should be addressed: Dept. of Neurobiology, Pharmacology, and Physiology, the University of Chicago, 947 E. 58th St., MC 0926, Chicago, IL 60637. Tel.: 773-702-0126; Fax: 773-702-4066; E-mail: dnelson@drugs.bsd.uchicago.edu.


Copyright © 2001 by The American Society for Biochemistry and Molecular Biology, Inc.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
ClC-3 chloride channel/antiporter defect contributes to inflammatory bowel disease in humans and mice.
L.-Y. Huang, Q. He, S.-J. Liang, Y.-X. Su, L.-X. Xiong, Q.-Q. Wu, Q.-Y. Wu, J. Tao, J.-P. Wang, Y.-B. Tang, et al. (2014)
Gut
   Abstract »    Full Text »
Genome-wide identification and functional analyses of microRNA signatures associated with cancer pain.
K. K. Bali, D. Selvaraj, V. P. Satagopam, J. Lu, R. Schneider, and R. Kuner (2013)
EMBO Mol Med. 5, 1740-1758
   Abstract »    Full Text »    PDF »
CLCA Splicing Isoform Associated with Adhesion through {beta}1-Integrin and Its Scaffolding Protein: SPECIFIC EXPRESSION IN UNDIFFERENTIATED EPITHELIAL CELLS.
J. Yamazaki, K. Okamura, K. Uehara, and M. Hatta (2013)
J. Biol. Chem. 288, 4831-4843
   Abstract »    Full Text »    PDF »
CLC-3 chloride channels moderate long-term potentiation at Schaffer collateral-CA1 synapses.
L. M. Farmer, B. N. Le, and D. J. Nelson (2013)
J. Physiol. 591, 1001-1015
   Abstract »    Full Text »    PDF »
Bradykinin-Induced Chemotaxis of Human Gliomas Requires the Activation of KCa3.1 and ClC-3.
V. A. Cuddapah, K. L. Turner, S. Seifert, and H. Sontheimer (2013)
J. Neurosci. 33, 1427-1440
   Abstract »    Full Text »    PDF »
Biomarkers of Phenethyl Isothiocyanate-Mediated Mammary Cancer Chemoprevention in a Clinically Relevant Mouse Model.
S. V. Singh, S.-H. Kim, A. Sehrawat, J. A. Arlotti, E.-R. Hahm, K. Sakao, J. H. Beumer, R. C. Jankowitz, K. Chandra-Kuntal, J. Lee, et al. (2012)
J Natl Cancer Inst 104, 1228-1239
   Abstract »    Full Text »    PDF »
CaMKII inhibition hyperpolarizes membrane and blocks nitrergic IJP by closing a Cl- conductance in intestinal smooth muscle.
X.-D. He and R. K. Goyal (2012)
Am J Physiol Gastrointest Liver Physiol 303, G240-G246
   Abstract »    Full Text »    PDF »
Differential regulation of a CLC anion channel by SPAK kinase ortholog-mediated multisite phosphorylation.
H. Miyazaki and K. Strange (2012)
Am J Physiol Cell Physiol 302, C1702-C1712
   Abstract »    Full Text »    PDF »
Kinase activation of ClC-3 accelerates cytoplasmic condensation during mitotic cell rounding.
V. A. Cuddapah, C. W. Habela, S. Watkins, L. S. Moore, T.-T. C. Barclay, and H. Sontheimer (2012)
Am J Physiol Cell Physiol 302, C527-C538
   Abstract »    Full Text »    PDF »
TMEM16A channels generate Ca2+-activated Cl- currents in cerebral artery smooth muscle cells.
C. Thomas-Gatewood, Z. P. Neeb, S. Bulley, A. Adebiyi, J. P. Bannister, M. D. Leo, and J. H. Jaggar (2011)
Am J Physiol Heart Circ Physiol 301, H1819-H1827
   Abstract »    Full Text »    PDF »
TMEM16A Protein: A New Identity for Ca2+-Dependent Cl- Channels.
L. Ferrera, A. Caputo, and L. J. V. Galietta (2010)
Physiology 25, 357-363
   Abstract »    Full Text »    PDF »
Activation of Swelling-activated Chloride Current by Tumor Necrosis Factor-{alpha} Requires ClC-3-dependent Endosomal Reactive Oxygen Production.
J. J. Matsuda, M. S. Filali, J. G. Moreland, F. J. Miller, and F. S. Lamb (2010)
J. Biol. Chem. 285, 22864-22873
   Abstract »    Full Text »    PDF »
Tmem16A Encodes the Ca2+-activated Cl- Channel in Mouse Submandibular Salivary Gland Acinar Cells.
V. G. Romanenko, M. A. Catalan, D. A. Brown, I. Putzier, H. C. Hartzell, A. D. Marmorstein, M. Gonzalez-Begne, J. R. Rock, B. D. Harfe, and J. E. Melvin (2010)
J. Biol. Chem. 285, 12990-13001
   Abstract »    Full Text »    PDF »
Molecular Interaction and Functional Regulation of ClC-3 by Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII) in Human Malignant Glioma.
V. A. Cuddapah and H. Sontheimer (2010)
J. Biol. Chem. 285, 11188-11196
   Abstract »    Full Text »    PDF »
Chloride channel ClC-3 in gills of the euryhaline teleost, Tetraodon nigroviridis: expression, localization and the possible role of chloride absorption.
C.-H. Tang, L.-Y. Hwang, and T.-H. Lee (2010)
J. Exp. Biol. 213, 683-693
   Abstract »    Full Text »    PDF »
The ClC-3 Cl-/H+ Antiporter Becomes Uncoupled at Low Extracellular pH.
J. J. Matsuda, M. S. Filali, M. M. Collins, K. A. Volk, and F. S. Lamb (2010)
J. Biol. Chem. 285, 2569-2579
   Abstract »    Full Text »    PDF »
Bestrophin-1 Enables Ca2+-activated Cl- Conductance in Epithelia.
R. Barro Soria, M. Spitzner, R. Schreiber, and K. Kunzelmann (2009)
J. Biol. Chem. 284, 29405-29412
   Abstract »    Full Text »    PDF »
Identification of Regulatory Phosphorylation Sites in a Cell Volume- and Ste20 Kinase-dependent ClC Anion Channel.
R. A. Falin, R. Morrison, A.-J. L. Ham, and K. Strange (2008)
J. Gen. Physiol. 133, 29-42
   Abstract »    Full Text »    PDF »
ClC-3 and IClswell are Required for Normal Neutrophil Chemotaxis and Shape Change.
A. P. D. Volk, C. K. Heise, J. L. Hougen, C. M. Artman, K. A. Volk, D. Wessels, D. R. Soll, W. M. Nauseef, F. S. Lamb, and J. G. Moreland (2008)
J. Biol. Chem. 283, 34315-34326
   Abstract »    Full Text »    PDF »
TMEM16A, A Membrane Protein Associated with Calcium-Dependent Chloride Channel Activity.
A. Caputo, E. Caci, L. Ferrera, N. Pedemonte, C. Barsanti, E. Sondo, U. Pfeffer, R. Ravazzolo, O. Zegarra-Moran, and L. J. V. Galietta (2008)
Science 322, 590-594
   Abstract »    Full Text »    PDF »
Role of the Vesicular Chloride Transporter ClC-3 in Neuroendocrine Tissue.
T. Maritzen, D. J. Keating, I. Neagoe, A. A. Zdebik, and T. J. Jentsch (2008)
J. Neurosci. 28, 10587-10598
   Abstract »    Full Text »    PDF »
ClC3 Is a Critical Regulator of the Cell Cycle in Normal and Malignant Glial Cells.
C. W. Habela, M. L. Olsen, and H. Sontheimer (2008)
J. Neurosci. 28, 9205-9217
   Abstract »    Full Text »    PDF »
Platelet-activating factor-induced chloride channel activation is associated with intracellular acidosis and apoptosis of intestinal epithelial cells.
E. C. Claud, J. Lu, X. Q. Wang, M. Abe, E. O. Petrof, J. Sun, D. J. Nelson, J. Marks, and T. Jilling (2008)
Am J Physiol Gastrointest Liver Physiol 294, G1191-G1200
   Abstract »    Full Text »    PDF »
The Intracellular Region of ClC-3 Chloride Channel Is in a Partially Folded State and a Monomer..
S. J. Li, M. Kawazaki, K. Ogasahara, and A. Nakagawa (2006)
J. Biochem. 139, 813-820
   Abstract »    Full Text »    PDF »
The kinetics of synaptic vesicle reacidification at hippocampal nerve terminals..
P. P. Atluri and T. A. Ryan (2006)
J. Neurosci. 26, 2313-2320
   Abstract »    Full Text »    PDF »
Regulation of Intracellular Cl- Concentration through Volume-regulated ClC-3 Chloride Channels in A10 Vascular Smooth Muscle Cells.
J.-G. Zhou, J.-L. Ren, Q.-y. Qiu, H. He, and Y.-Y. Guan (2005)
J. Biol. Chem. 280, 7301-7308
   Abstract »    Full Text »    PDF »
GCK-3, a Newly Identified Ste20 Kinase, Binds To and Regulates the Activity of a Cell Cycle-dependent ClC Anion Channel.
J. Denton, K. Nehrke, X. Yin, R. Morrison, and K. Strange (2005)
J. Gen. Physiol. 125, 113-125
   Abstract »    Full Text »    PDF »
ClC-3 Chloride Channels Facilitate Endosomal Acidification and Chloride Accumulation.
M. Hara-Chikuma, B. Yang, N. D. Sonawane, S. Sasaki, S. Uchida, and A. S. Verkman (2005)
J. Biol. Chem. 280, 1241-1247
   Abstract »    Full Text »    PDF »
Genetic Analysis of the Neuronal and Ubiquitous AP-3 Adaptor Complexes Reveals Divergent Functions in Brain.
E. Seong, B. H. Wainer, E. D. Hughes, T. L. Saunders, M. Burmeister, and V. Faundez (2005)
Mol. Biol. Cell 16, 128-140
   Abstract »    Full Text »    PDF »
Direct effect of Ca2+-calmodulin on cGMP-activated Ca2+-dependent Cl-channels in rat mesenteric artery myocytes.
A. S. Piper and W. A. Large (2004)
J. Physiol. 559, 449-457
   Abstract »    Full Text »    PDF »
AP-3-dependent Mechanisms Control the Targeting of a Chloride Channel (ClC-3) in Neuronal and Non-neuronal Cells.
G. Salazar, R. Love, M. L. Styers, E. Werner, A. Peden, S. Rodriguez, M. Gearing, B. H. Wainer, and V. Faundez (2004)
J. Biol. Chem. 279, 25430-25439
   Abstract »    Full Text »    PDF »
Altered properties of volume-sensitive osmolyte and anion channels (VSOACs) and membrane protein expression in cardiac and smooth muscle myocytes from Clcn3-/- mice.
S. Yamamoto-Mizuma, G.-X. Wang, L. L. Liu, K. Schegg, W. J. Hatton, D. Duan, T. L. B. Horowitz, F. S. Lamb, and J. R. Hume (2004)
J. Physiol. 557, 439-456
   Abstract »    Full Text »    PDF »
Identification of an N-terminal amino acid of the CLC-3 chloride channel critical in phosphorylation-dependent activation of a CaMKII-activated chloride current.
N. C. Robinson, P. Huang, M. A. Kaetzel, F. S. Lamb, and D. J. Nelson (2004)
J. Physiol. 556, 353-368
   Abstract »    Full Text »    PDF »
Ca2+-activated Chloride Channels Go Molecular.
M. Pusch (2004)
J. Gen. Physiol. 123, 323-325
   Full Text »    PDF »
Fundamental role of ClC-3 in volume-sensitive Cl- channel function and cell volume regulation in AGS cells.
N. G. Jin, J. K. Kim, D. K. Yang, S. J. Cho, J. M. Kim, E. J. Koh, H. C. Jung, I. So, and K. W. Kim (2003)
Am J Physiol Gastrointest Liver Physiol 285, G938-G948
   Abstract »    Full Text »    PDF »
Intron Disruption of the Annexin IV Gene Reveals Novel Transcripts.
B. Li, J. R. Dedman, and M. A. Kaetzel (2003)
J. Biol. Chem. 278, 43276-43283
   Abstract »    Full Text »    PDF »
Functional effects of novel anti-ClC-3 antibodies on native volume-sensitive osmolyte and anion channels in cardiac and smooth muscle cells.
G.-X. Wang, W. J. Hatton, G. L. Wang, J. Zhong, I. Yamboliev, D. Duan, and J. R. Hume (2003)
Am J Physiol Heart Circ Physiol 285, H1453-H1463
   Abstract »    Full Text »    PDF »
Characterization of vectorial chloride transport pathways in the human pancreatic duct adenocarcinoma cell line HPAF.
P. Fong, B. E. Argent, W. B. Guggino, and M. A. Gray (2003)
Am J Physiol Cell Physiol 285, C433-C445
   Abstract »    Full Text »    PDF »
Expression of Voltage-Gated Chloride Channels in Human Glioma Cells.
M. L. Olsen, S. Schade, S. A. Lyons, M. D. Amaral, and H. Sontheimer (2003)
J. Neurosci. 23, 5572-5582
   Abstract »    Full Text »    PDF »
The PDZ-binding Chloride Channel ClC-3B Localizes to the Golgi and Associates with Cystic Fibrosis Transmembrane Conductance Regulator-interacting PDZ Proteins.
M. Gentzsch, L. Cui, A. Mengos, X.-b. Chang, J.-H. Chen, and J. R. Riordan (2003)
J. Biol. Chem. 278, 6440-6449
   Abstract »    Full Text »    PDF »
Secretion and cell volume regulation by salivary acinar cells from mice lacking expression of the Clcn3 Cl- channel gene.
J. Arreola, T. Begenisich, K. Nehrke, H.-V. Nguyen, K. Park, L. Richardson, B. Yang, B. C Schutte, F. S Lamb, and J. E Melvin (2002)
J. Physiol. 545, 207-216
   Abstract »    Full Text »    PDF »
ClC-3 Is a Fundamental Molecular Component of Volume-sensitive Outwardly Rectifying Cl- Channels and Volume Regulation in HeLa Cells and Xenopus laevis Oocytes.
M. Hermoso, C. M. Satterwhite, Y. N. Andrade, J. Hidalgo, S. M. Wilson, B. Horowitz, and J. R. Hume (2002)
J. Biol. Chem. 277, 40066-40074
   Abstract »    Full Text »    PDF »
Cell cycle- and swelling-induced activation of a Caenorhabditis elegans ClC channel is mediated by CeGLC-7{alpha}/{beta} phosphatases.
E. Rutledge, J. Denton, and K. Strange (2002)
J. Cell Biol. 158, 435-444
   Abstract »    Full Text »    PDF »
Molecular Structure and Physiological Function of Chloride Channels.
T. J. Jentsch, V. Stein, F. Weinreich, and A. A. Zdebik (2002)
Physiol Rev 82, 503-568
   Abstract »    Full Text »    PDF »
The Chloride Channel ClC-4 Co-localizes with Cystic Fibrosis Transmembrane Conductance Regulator and May Mediate Chloride Flux across the Apical Membrane of Intestinal Epithelia.
R. Mohammad-Panah, C. Ackerley, J. Rommens, M. Choudhury, Y. Wang, and C. E. Bear (2002)
J. Biol. Chem. 277, 566-574
   Abstract »    Full Text »
Distribution of ClC-2 chloride channel in rat and human epithelial tissues.
J. Lipecka, M. Bali, A. Thomas, P. Fanen, A. Edelman, and J. Fritsch (2002)
Am J Physiol Cell Physiol 282, C805-C816
   Abstract »    Full Text »    PDF »
The ClC-3 chloride channel promotes acidification of lysosomes in CHO-K1 and Huh-7 cells.
X. Li, T. Wang, Z. Zhao, and S. A. Weinman (2002)
Am J Physiol Cell Physiol 282, C1483-C1491
   Abstract »    Full Text »    PDF »
Pre- and Postnatal Lung Development, Maturation, and Plasticity: ClC-5: ontogeny of an alternative chloride channel in respiratory epithelia.
R. D. Edmonds, I. V. Silva, W. B. Guggino, R. B. Butler, P. L. Zeitlin, and C. J. Blaisdell (2002)
Am J Physiol Lung Cell Mol Physiol 282, L501-L507
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882