Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Biol. Chem. 277 (22): 19861-19866

© 2002 by The American Society for Biochemistry and Molecular Biology, Inc.

Localization of the Ethylene Receptor ETR1 to the Endoplasmic Reticulum of Arabidopsis*

Yi-Feng Chen, Melynda D. Randlett, Jennifer L. Findell, and G. Eric SchallerDagger

From the Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824

The ethylene receptor ETR1 of Arabidopsis contains transmembrane domains responsible for ethylene binding and membrane localization. Sequence analysis does not provide information as to which membrane system of the plant cell ETR1 is localized. Examination by aqueous two-phase partitioning, sucrose density-gradient centrifugation, and immunoelectron microscopy indicates that ETR1 is predominantly localized to the endoplasmic reticulum. Localization of ETR1 showed no change following a cycloheximide chase. Ethylene binding by ETR1 did not affect localization to the endoplasmic reticulum, based upon analysis of plants treated with the ethylene precursor 1-aminocyclopropane- 1-carboxylic acid and by examination of a mutant receptor that does not bind ethylene. Determinants within the amino-terminal half of ETR1 are sufficient for targeting to and retention at the endoplasmic reticulum. These data support a central role of the plant endoplasmic reticulum in hormone perception and signal transduction.

* This work was supported by National Science Foundation Grant MCB-9982510 and is Scientific Contribution No. 2115 from the New Hampshire Agricultural Experiment Station.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Dagger To whom correspondence should be addressed. Dept. of Biochemistry and Molecular Biology, University of New Hampshire, Durham, NH 03824. Tel.: 603-862-0565; Fax: 603-862-4013; E-mail:

Copyright © 2002 by The American Society for Biochemistry and Molecular Biology, Inc.

Modelling and experimental analysis of hormonal crosstalk in Arabidopsis.
J. Liu, S. Mehdi, J. Topping, P. Tarkowski, and K. Lindsey (2014)
Mol Syst Biol 6, 373
   Abstract »    Full Text »    PDF »
Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family.
S. N. Shakeel, X. Wang, B. M. Binder, and G. E. Schaller (2013)
AoB Plants 5, plt010
   Abstract »    Full Text »    PDF »
Differential Control of Ethylene Responses by GREEN-RIPE and GREEN-RIPE LIKE1 Provides Evidence for Distinct Ethylene Signaling Modules in Tomato.
Q. Ma, W. Du, F. Brandizzi, J. J. Giovannoni, and C. S. Barry (2012)
Plant Physiology 160, 1968-1984
   Abstract »    Full Text »    PDF »
A Comparative Study of Ethylene Growth Response Kinetics in Eudicots and Monocots Reveals a Role for Gibberellin in Growth Inhibition and Recovery.
J. Kim, R. L. Wilson, J. B. Case, and B. M. Binder (2012)
Plant Physiology 160, 1567-1580
   Abstract »    Full Text »    PDF »
Advances in ethylene signalling: protein complexes at the endoplasmic reticulum membrane.
C. Ju and C. Chang (2012)
AoB Plants 2012, pls031
   Abstract »    Full Text »    PDF »
Ligand-Induced Alterations in the Phosphorylation State of Ethylene Receptors in Tomato Fruit.
Y. Kamiyoshihara, D. M. Tieman, D. J. Huber, and H. J. Klee (2012)
Plant Physiology 160, 488-497
   Abstract »    Full Text »    PDF »
Histidine Kinase Activity of the Ethylene Receptor ETR1 Facilitates the Ethylene Response in Arabidopsis.
B. P. Hall, S. N. Shakeel, M. Amir, N. U. Haq, X. Qu, and G. E. Schaller (2012)
Plant Physiology 159, 682-695
   Abstract »    Full Text »    PDF »
Evidence for the localization of the Arabidopsis cytokinin receptors AHK3 and AHK4 in the endoplasmic reticulum.
K. Caesar, A. M. K. Thamm, J. Witthoft, K. Elgass, P. Huppenberger, C. Grefen, J. Horak, and K. Harter (2011)
J. Exp. Bot. 62, 5571-5580
   Abstract »    Full Text »    PDF »
Ligand-binding properties and subcellular localization of maize cytokinin receptors.
S. N. Lomin, K. Yonekura-Sakakibara, G. A. Romanov, and H. Sakakibara (2011)
J. Exp. Bot. 62, 5149-5159
   Abstract »    Full Text »    PDF »
The Cytokinin Receptors of Arabidopsis Are Located Mainly to the Endoplasmic Reticulum.
K. Wulfetange, S. N. Lomin, G. A. Romanov, A. Stolz, A. Heyl, and T. Schmulling (2011)
Plant Physiology 156, 1808-1818
   Abstract »    Full Text »    PDF »
Ethylene Receptor ETHYLENE RECEPTOR1 Domain Requirements for Ethylene Responses in Arabidopsis Seedlings.
H. Kim, E. E. Helmbrecht, M. B. Stalans, C. Schmitt, N. Patel, C.-K. Wen, W. Wang, and B. M. Binder (2011)
Plant Physiology 156, 417-429
   Abstract »    Full Text »    PDF »
Molecular Association of the Arabidopsis ETR1 Ethylene Receptor and a Regulator of Ethylene Signaling, RTE1.
C.-H. Dong, M. Jang, B. Scharein, A. Malach, M. Rivarola, J. Liesch, G. Groth, I. Hwang, and C. Chang (2010)
J. Biol. Chem. 285, 40706-40713
   Abstract »    Full Text »    PDF »
The Copper Transporter RAN1 Is Essential for Biogenesis of Ethylene Receptors in Arabidopsis.
B. M. Binder, F. I. Rodriguez, and A. B. Bleecker (2010)
J. Biol. Chem. 285, 37263-37270
   Abstract »    Full Text »    PDF »
Identification of Novel Inhibitors of 1-Aminocyclopropane-1-carboxylic Acid Synthase by Chemical Screening in Arabidopsis thaliana.
L.-C. Lin, J.-H. Hsu, and L.-C. Wang (2010)
J. Biol. Chem. 285, 33445-33456
   Abstract »    Full Text »    PDF »
COI1, a jasmonate receptor, is involved in ethylene-induced inhibition of Arabidopsis root growth in the light.
E. Adams and J. Turner (2010)
J. Exp. Bot. 61, 4373-4386
   Abstract »    Full Text »    PDF »
Ethylene-Induced Stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 Is Mediated by Proteasomal Degradation of EIN3 Binding F-Box 1 and 2 That Requires EIN2 in Arabidopsis.
F. An, Q. Zhao, Y. Ji, W. Li, Z. Jiang, X. Yu, C. Zhang, Y. Han, W. He, Y. Liu, et al. (2010)
PLANT CELL 22, 2384-2401
   Abstract »    Full Text »    PDF »
Regulated Ethylene Insensitivity through the Inducible Expression of the Arabidopsis etr1-1 Mutant Ethylene Receptor in Tomato.
D. R. Gallie (2010)
Plant Physiology 152, 1928-1939
   Abstract »    Full Text »    PDF »
Effects of Tobacco Ethylene Receptor Mutations on Receptor Kinase Activity, Plant Growth and Stress Responses.
T. Chen, J. Liu, G. Lei, Y.-F. Liu, Z.-G. Li, J.-J. Tao, Y.-J. Hao, Y.-R. Cao, Q. Lin, W.-K. Zhang, et al. (2009)
Plant Cell Physiol. 50, 1636-1650
   Abstract »    Full Text »    PDF »
Recent advances in ethylene research.
Z. Lin, S. Zhong, and D. Grierson (2009)
J. Exp. Bot. 60, 3311-3336
   Abstract »    Full Text »    PDF »
The Ethylene Receptor ETR2 Delays Floral Transition and Affects Starch Accumulation in Rice.
H. Wuriyanghan, B. Zhang, W.-H. Cao, B. Ma, G. Lei, Y.-F. Liu, W. Wei, H.-J. Wu, L.-J. Chen, H.-W. Chen, et al. (2009)
PLANT CELL 21, 1473-1494
   Abstract »    Full Text »    PDF »
Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis.
H. Qiao, K. N. Chang, J. Yazaki, and J. R. Ecker (2009)
Genes & Dev. 23, 512-521
   Abstract »    Full Text »    PDF »
SlTPR1, a tomato tetratricopeptide repeat protein, interacts with the ethylene receptors NR and LeETR1, modulating ethylene and auxin responses and development.
Z. Lin, L. Arciga-Reyes, S. Zhong, L. Alexander, R. Hackett, I. Wilson, and D. Grierson (2008)
J. Exp. Bot. 59, 4271-4287
   Abstract »    Full Text »    PDF »
Heteromeric Interactions among Ethylene Receptors Mediate Signaling in Arabidopsis.
Z. Gao, C.-K. Wen, B. M. Binder, Y.-F. Chen, J. Chang, Y.-H. Chiang, R. J. Kerris III, C. Chang, and G. E. Schaller (2008)
J. Biol. Chem. 283, 23801-23810
   Abstract »    Full Text »    PDF »
Expression of ethylene biosynthetic and receptor genes in rose floral tissues during ethylene-enhanced flower opening.
J. Xue, Y. Li, H. Tan, F. Yang, N. Ma, and J. Gao (2008)
J. Exp. Bot. 59, 2161-2169
   Abstract »    Full Text »    PDF »
Subcellular Localization and In Vivo Interactions of the Arabidopsis thaliana Ethylene Receptor Family Members.
C. Grefen, K. Stadele, K. Ruzicka, P. Obrdlik, K. Harter, and J. Horak (2008)
Mol Plant 1, 308-320
   Abstract »    Full Text »    PDF »
Tomato ethylene receptor-CTR interactions: visualization of NEVER-RIPE interactions with multiple CTRs at the endoplasmic reticulum.
S. Zhong, Z. Lin, and D. Grierson (2008)
J. Exp. Bot. 59, 965-972
   Abstract »    Full Text »    PDF »
Identification of a Novel Adenine Nucleotide Transporter in the Endoplasmic Reticulum of Arabidopsis.
M. Leroch, H. E. Neuhaus, S. Kirchberger, S. Zimmermann, M. Melzer, J. Gerhold, and J. Tjaden (2008)
PLANT CELL 20, 438-451
   Abstract »    Full Text »    PDF »
To grow or not to grow: what can we learn on ethylene-gibberellin cross-talk by in silico gene expression analysis?.
J. Dugardeyn, F. Vandenbussche, and D. Van Der Straeten (2008)
J. Exp. Bot. 59, 1-16
   Abstract »    Full Text »    PDF »
RTE1 Is a Golgi-Associated and ETR1-Dependent Negative Regulator of Ethylene Responses.
X. Zhou, Q. Liu, F. Xie, and C.-K. Wen (2007)
Plant Physiology 145, 75-86
   Abstract »    Full Text »    PDF »
Ligand-induced Degradation of the Ethylene Receptor ETR2 through a Proteasome-dependent Pathway in Arabidopsis.
Y.-F. Chen, S. N. Shakeel, J. Bowers, X.-C. Zhao, N. Etheridge, and G. E. Schaller (2007)
J. Biol. Chem. 282, 24752-24758
   Abstract »    Full Text »    PDF »
Heterotrimeric G protein signaling in the Arabidopsis unfolded protein response.
S. Wang, S. Narendra, and N. Fedoroff (2007)
PNAS 104, 3817-3822
   Abstract »    Full Text »    PDF »
ETHYLENE RESPONSE 1 Histidine Kinase Activity of Arabidopsis Promotes Plant Growth.
Y.-H. Cho and S.-D. Yoo (2007)
Plant Physiology 143, 612-616
   Full Text »    PDF »
KEEP ON GOING, a RING E3 Ligase Essential for Arabidopsis Growth and Development, Is Involved in Abscisic Acid Signaling.
S. L. Stone, L. A. Williams, L. M. Farmer, R. D. Vierstra, and J. Callis (2006)
PLANT CELL 18, 3415-3428
   Abstract »    Full Text »    PDF »
Identification of Important Regions for Ethylene Binding and Signaling in the Transmembrane Domain of the ETR1 Ethylene Receptor of Arabidopsis.
W. Wang, J. J. Esch, S.-H. Shiu, H. Agula, B. M. Binder, C. Chang, S. E. Patterson, and A. B. Bleecker (2006)
PLANT CELL 18, 3429-3442
   Abstract »    Full Text »    PDF »
Plant hormone receptors: perception is everything.
B. Chow and P. McCourt (2006)
Genes & Dev. 20, 1998-2008
   Abstract »    Full Text »    PDF »
Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha.
N. Ma, H. Tan, X. Liu, J. Xue, Y. Li, and J. Gao (2006)
J. Exp. Bot. 57, 2763-2773
   Abstract »    Full Text »    PDF »
Subcellular Localization and Membrane Topology of the Melon Ethylene Receptor CmERS1.
B. Ma, M.-L. Cui, H.-J. Sun, K. Takada, H. Mori, H. Kamada, and H. Ezura (2006)
Plant Physiology 141, 587-597
   Abstract »    Full Text »    PDF »
From The Cover: REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis.
J. S. Resnick, C.-K. Wen, J. A. Shockey, and C. Chang (2006)
PNAS 103, 7917-7922
   Abstract »    Full Text »    PDF »
Signs of change: hormone receptors that regulate plant development..
A. Bishopp, A. P. Mahonen, and Y. Helariutta (2006)
Development 133, 1857-1869
   Abstract »    Full Text »    PDF »
Ethylene Signal Transduction.
Ann. Bot. 95, 901-915
   Abstract »    Full Text »    PDF »
Ethylene Signaling Pathway.
A. N. Stepanova and J. M. Alonso (2005)
Sci. STKE 2005, cm3
   Abstract »    Full Text »    PDF »
Arabidopsis Ethylene Signaling Pathway.
A. N. Stepanova and J. M. Alonso (2005)
Sci. STKE 2005, cm4
   Abstract »    Full Text »    PDF »
Requirement of the Histidine Kinase Domain for Signal Transduction by the Ethylene Receptor ETR1.
X. Qu and G. E. Schaller (2004)
Plant Physiology 136, 2961-2970
   Abstract »    Full Text »    PDF »
Evidence for Serine/Threonine and Histidine Kinase Activity in the Tobacco Ethylene Receptor Protein NTHK2.
Z.-G. Zhang, H.-L. Zhou, T. Chen, Y. Gong, W.-H. Cao, Y.-J. Wang, J.-S. Zhang, and S.-Y. Chen (2004)
Plant Physiology 136, 2971-2981
   Abstract »    Full Text »    PDF »
Differential expression of three genes encoding an ethylene receptor in rice during development, and in response to indole-3-acetic acid and silver ions.
C. P. Yau, L. Wang, M. Yu, S. Y. Zee, and W. K. Yip (2004)
J. Exp. Bot. 55, 547-556
   Abstract »    Full Text »    PDF »
Localization of an Ascorbate-Reducible Cytochrome b561 in the Plant Tonoplast.
D. Griesen, D. Su, A. Berczi, and H. Asard (2004)
Plant Physiology 134, 726-734
   Abstract »    Full Text »    PDF »
Ethylene Regulates Arabidopsis Development via the Modulation of DELLA Protein Growth Repressor Function.
P. Achard, W. H. Vriezen, D. Van Der Straeten, and N. P. Harberd (2003)
PLANT CELL 15, 2816-2825
   Abstract »    Full Text »    PDF »
Localization of the Raf-like Kinase CTR1 to the Endoplasmic Reticulum of Arabidopsis through Participation in Ethylene Receptor Signaling Complexes.
Z. Gao, Y.-F. Chen, M. D. Randlett, X.-C. Zhao, J. L. Findell, J. J. Kieber, and G. E. Schaller (2003)
J. Biol. Chem. 278, 34725-34732
   Abstract »    Full Text »    PDF »
A MAPK pathway mediates ethylene signaling in plants.
F. Ouaked, W. Rozhon, D. Lecourieux, and H. Hirt (2003)
EMBO J. 22, 1282-1288
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882