Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Biol. Chem. 277 (27): 24427-24434

© 2002 by The American Society for Biochemistry and Molecular Biology, Inc.

Coupling of Cell Energetics with Membrane Metabolic Sensing

M. Roselle Abraham, Vitaliy A. Selivanov, Denice M. Hodgson, Darko Pucar, Leonid V. Zingman, Be WieringaDagger , Petras P. Dzeja, Alexey E. Alekseev, and Andre Terzic§

From the Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology, and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905 and the Dagger  Center for Molecular Life Sciences, University Medical Center, University of Nijmegen, Nijmegen 6500, The Netherlands

Transduction of metabolic signals is essential in preserving cellular homeostasis. Yet, principles governing integration and synchronization of membrane metabolic sensors with cell metabolism remain elusive. Here, analysis of cellular nucleotide fluxes and nucleotide-dependent gating of the ATP-sensitive K+ (KATP) channel, a prototypic metabolic sensor, revealed a diffusional barrier within the submembrane space, preventing direct reception of cytosolic signals. Creatine kinase phosphotransfer, captured by 18O-assisted 31P NMR, coordinated tightly with ATP turnover, reflecting the cellular energetic status. The dynamics of high energy phosphoryl transfer through the creatine kinase relay permitted a high fidelity transmission of energetic signals into the submembrane compartment synchronizing KATP channel activity with cell metabolism. Knock-out of the creatine kinase M-CK gene disrupted signal delivery to KATP channels and generated a cellular phenotype with increased electrical vulnerability. Thus, in the compartmentalized cell environment, phosphotransfer systems shunt diffusional barriers and secure regimented signal transduction integrating metabolic sensors with the cellular energetic network.

* This work was supported by National Institutes of Health Grants HL-64822 and HL-07111 and by the American Heart Association, the Guidant Foundation, the Marriott Foundation, the Miami Heart Research Institute, the Bruce and Ruth Rappaport Program in Vascular Biology and Gene Delivery, the American Physicians Fellowship for Medicine in Israel, and the CR Program at the Mayo Clinic.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

§ Established Investigator of the American Heart Association. To whom correspondence should be addressed: Division of Cardiovascular Diseases, Depts. of Medicine, Molecular Pharmacology, and Experimental Therapeutics, Mayo Clinic, Guggenheim 7, 200 First St. SW, Rochester, MN 55905. Tel.: 507-284-2747; Fax: 507-284-9111; E-mail:

Copyright © 2002 by The American Society for Biochemistry and Molecular Biology, Inc.

Sarcolemmal ATP-sensitive potassium channels modulate skeletal muscle function under low-intensity workloads.
Z. Zhu, A. Sierra, C. M.- L. Burnett, B. Chen, E. Subbotina, S. R. K. Koganti, Z. Gao, Y. Wu, M. E. Anderson, L.-S. Song, et al. (2014)
J. Gen. Physiol. 143, 119-134
   Abstract »    Full Text »    PDF »
Metabolic Rates of ATP Transfer Through Creatine Kinase (CK Flux) Predict Clinical Heart Failure Events and Death.
P. A. Bottomley, G. S. Panjrath, S. Lai, G. A. Hirsch, K. Wu, S. S. Najjar, A. Steinberg, G. Gerstenblith, and R. G. Weiss (2013)
Science Translational Medicine 5, 215re3
   Full Text »    PDF »
Molecular Mechanism of Sulphonylurea Block of KATP Channels Carrying Mutations That Impair ATP Inhibition and Cause Neonatal Diabetes.
P. Proks, H. de Wet, and F. M. Ashcroft (2013)
Diabetes 62, 3909-3919
   Abstract »    Full Text »    PDF »
Unchanged mitochondrial organization and compartmentation of high-energy phosphates in creatine-deficient GAMT-/- mouse hearts.
J. Branovets, M. Sepp, S. Kotlyarova, N. Jepihhina, N. Sokolova, D. Aksentijevic, C. A. Lygate, S. Neubauer, M. Vendelin, and R. Birkedal (2013)
Am J Physiol Heart Circ Physiol 305, H506-H520
   Abstract »    Full Text »    PDF »
Relationship of Delayed Enhancement by Magnetic Resonance to Myocardial Perfusion by Positron Emission Tomography in Hypertrophic Cardiomyopathy.
P. E. Bravo, S. L. Zimmerman, H.-C. Luo, I. Pozios, M. Rajaram, A. Pinheiro, C. Steenbergen, I. R. Kamel, R. L. Wahl, D. A. Bluemke, et al. (2013)
Circ Cardiovasc Imaging 6, 210-217
   Abstract »    Full Text »    PDF »
Regulation of Cardiac ATP-sensitive Potassium Channel Surface Expression by Calcium/Calmodulin-dependent Protein Kinase II.
A. Sierra, Z. Zhu, N. Sapay, V. Sharotri, C. F. Kline, E. D. Luczak, E. Subbotina, A. Sivaprasadarao, P. M. Snyder, P. J. Mohler, et al. (2013)
J. Biol. Chem. 288, 1568-1581
   Abstract »    Full Text »    PDF »
Dynamic phosphometabolomic profiling of human tissues and transgenic models by 18O-assisted 31P NMR and mass spectrometry.
E. Nemutlu, S. Zhang, A. Gupta, N. O. Juranic, S. I. Macura, A. Terzic, A. Jahangir, and P. Dzeja (2012)
Physiol Genomics 44, 386-402
   Abstract »    Full Text »    PDF »
Molecular Dynamics Simulations of Creatine Kinase and Adenine Nucleotide Translocase in Mitochondrial Membrane Patch.
J. Karo, P. Peterson, and M. Vendelin (2012)
J. Biol. Chem. 287, 7467-7476
   Abstract »    Full Text »    PDF »
Rearrangement of energetic and substrate utilization networks compensate for chronic myocardial creatine kinase deficiency.
P. P. Dzeja, K. Hoyer, R. Tian, S. Zhang, E. Nemutlu, M. Spindler, and J. S. Ingwall (2011)
J. Physiol. 589, 5193-5211
   Abstract »    Full Text »    PDF »
Advances in Cardiac ATP-Sensitive K+ Channelopathies From Molecules to Populations.
A. Terzic, A. E. Alekseev, S. Yamada, S. Reyes, and T. M. Olson (2011)
Circ Arrhythm Electrophysiol 4, 577-585
   Full Text »    PDF »
KATP channel-dependent metaboproteome decoded: systems approaches to heart failure prediction, diagnosis, and therapy.
D. K. Arrell, J. Zlatkovic Lindor, S. Yamada, and A. Terzic (2011)
Cardiovasc Res 90, 258-266
   Abstract »    Full Text »    PDF »
Activation of the KATP channel by Mg-nucleotide interaction with SUR1.
P. Proks, H. de Wet, and F. M. Ashcroft (2010)
J. Gen. Physiol. 136, 389-405
   Abstract »    Full Text »    PDF »
Channelopathies: Decoding Disease Pathogenesis.
A. Terzic and C. Perez-Terzic (2010)
Science Translational Medicine 2, 42ps37
   Full Text »    PDF »
Reversible Oxidative Modification: A Key Mechanism of Na+-K+ Pump Regulation.
G. A. Figtree, C.-C. Liu, S. Bibert, E. J. Hamilton, A. Garcia, C. N. White, K. K.M. Chia, F. Cornelius, K. Geering, and H. H. Rasmussen (2009)
Circ. Res. 105, 185-193
   Abstract »    Full Text »    PDF »
Energy metabolism in heart failure and remodelling.
J. S. Ingwall (2009)
Cardiovasc Res 81, 412-419
   Abstract »    Full Text »    PDF »
KCNJ11 knockout morula re-engineered by stem cell diploid aggregation.
T. J Nelson, A. Martinez-Fernandez, and A. Terzic (2009)
Phil Trans R Soc B 364, 269-276
   Abstract »    Full Text »    PDF »
Sulfonylurea Receptor Expression Heterogeneity Suggests Chamber-Specific Roles for Sarcolemmal KATP Channels in Heart.
P. H. Backx (2008)
Circ. Res. 103, 1345-1347
   Full Text »    PDF »
Anisotropic diffusion of fluorescently labeled ATP in rat cardiomyocytes determined by raster image correlation spectroscopy.
M. Vendelin and R. Birkedal (2008)
Am J Physiol Cell Physiol 295, C1302-C1315
   Abstract »    Full Text »    PDF »
How ATP Inhibits the Open KATP Channel.
T. J. Craig, F. M. Ashcroft, and P. Proks (2008)
J. Gen. Physiol. 132, 131-144
   Abstract »    Full Text »    PDF »
Role for SUR2A ED Domain in Allosteric Coupling within the KATP Channel Complex.
A. B. Karger, S. Park, S. Reyes, M. Bienengraeber, R. B. Dyer, A. Terzic, and A. E. Alekseev (2008)
J. Gen. Physiol. 131, 185-196
   Abstract »    Full Text »    PDF »
The Sulfonylurea Receptor, an Atypical ATP-Binding Cassette Protein, and Its Regulation of the KATP Channel.
M. A. Burke, R. K. Mutharasan, and H. Ardehali (2008)
Circ. Res. 102, 164-176
   Abstract »    Full Text »    PDF »
ATP-sensitive potassium channels: metabolic sensing and cardioprotection.
L. V. Zingman, A. E. Alekseev, D. M. Hodgson-Zingman, and A. Terzic (2007)
J Appl Physiol 103, 1888-1893
   Abstract »    Full Text »    PDF »
Defective Metabolic Signaling in Adenylate Kinase AK1 Gene Knock-out Hearts Compromises Post-ischemic Coronary Reflow.
P. P. Dzeja, P. Bast, D. Pucar, B. Wieringa, and A. Terzic (2007)
J. Biol. Chem. 282, 31366-31372
   Abstract »    Full Text »    PDF »
Modulation of TASK-like background potassium channels in rat arterial chemoreceptor cells by intracellular ATP and other nucleotides.
R. Varas, C. N. Wyatt, and K. J. Buckler (2007)
J. Physiol. 583, 521-536
   Abstract »    Full Text »    PDF »
Modeling transmural heterogeneity of KATP current in rabbit ventricular myocytes.
A. Michailova, W. Lorentz, and A. McCulloch (2007)
Am J Physiol Cell Physiol 293, C542-C557
   Abstract »    Full Text »    PDF »
KATP channel knockout worsens myocardial calcium stress load in vivo and impairs recovery in stunned heart.
R. J. Gumina, D. F. O'Cochlain, C. E. Kurtz, P. Bast, D. Pucar, P. Mishra, T. Miki, S. Seino, S. Macura, and A. Terzic (2007)
Am J Physiol Heart Circ Physiol 292, H1706-H1713
   Abstract »    Full Text »    PDF »
Protection conferred by myocardial ATP-sensitive K+ channels in pressure overload-induced congestive heart failure revealed in KCNJ11 Kir6.2-null mutant.
S. Yamada, G. C. Kane, A. Behfar, X.-K. Liu, R. B. Dyer, R. S. Faustino, T. Miki, S. Seino, and A. Terzic (2006)
J. Physiol. 577, 1053-1065
   Abstract »    Full Text »    PDF »
Gene knockout of the KCNJ8-encoded Kir6.1 KATP channel imparts fatal susceptibility to endotoxemia.
G. C. Kane, C.-F. Lam, F. O'Cochlain, D. M. Hodgson, S. Reyes, X.-K. Liu, T. Miki, S. Seino, Z. S. Katusic, and A. Terzic (2006)
FASEB J 20, 2271-2280
   Abstract »    Full Text »    PDF »
Thematic review series: Systems Biology Approaches to Metabolic and Cardiovascular Disorders. Network perspectives of cardiovascular metabolism.
J. N. Weiss, L. Yang, and Z. Qu (2006)
J. Lipid Res. 47, 2355-2366
   Abstract »    Full Text »    PDF »
KCNJ11 gene knockout of the Kir6.2 KATP channel causes maladaptive remodeling and heart failure in hypertension.
G. C. Kane, A. Behfar, R. B. Dyer, D. F. O'Cochlain, X.-K. Liu, D. M. Hodgson, S. Reyes, T. Miki, S. Seino, and A. Terzic (2006)
Hum. Mol. Genet. 15, 2285-2297
   Abstract »    Full Text »    PDF »
Cardiac system bioenergetics: metabolic basis of the Frank-Starling law.
V. Saks, P. Dzeja, U. Schlattner, M. Vendelin, A. Terzic, and T. Wallimann (2006)
J. Physiol. 571, 253-273
   Abstract »    Full Text »    PDF »
Calcium and energy transfer.
V. A. Saks, T. Wallimann, and U. Schlattner (2005)
J. Physiol. 565, 703
   Full Text »    PDF »
Creatine kinase knockout mice show left ventricular hypertrophy and dilatation, but unaltered remodeling post-myocardial infarction.
M. Nahrendorf, M. Spindler, K. Hu, L. Bauer, O. Ritter, P. Nordbeck, T. Quaschning, K.-H. Hiller, J. Wallis, G. Ertl, et al. (2005)
Cardiovasc Res 65, 419-427
   Abstract »    Full Text »    PDF »
Genetic Disruption of Kir6.2, the Pore-Forming Subunit of ATP-Sensitive K+ Channel, Predisposes to Catecholamine-Induced Ventricular Dysrhythmia.
X.-K. Liu, S. Yamada, G. C. Kane, A. E. Alekseev, D. M. Hodgson, F. O'Cochlain, A. Jahangir, T. Miki, S. Seino, and A. Terzic (2004)
Diabetes 53, S165-S168
   Abstract »    Full Text »    PDF »
ATP-Sensitive K+ Channel Knockout Compromises the Metabolic Benefit of Exercise Training, Resulting in Cardiac Deficits.
G. C. Kane, A. Behfar, S. Yamada, C. Perez-Terzic, F. O'Cochlain, S. Reyes, P. P. Dzeja, T. Miki, S. Seino, and A. Terzic (2004)
Diabetes 53, S169-S175
   Abstract »    Full Text »    PDF »
ATP-sensitive potassium channels mediate hyperosmotic stimulation of NKCC in slow-twitch muscle.
A. R. Gosmanov, Z. Fan, X. Mi, E. G. Schneider, and D. B. Thomason (2004)
Am J Physiol Cell Physiol 286, C586-C595
   Abstract »    Full Text »
Regulation of action potential duration under acute heat stress by IK,ATP and IK1 in fish cardiac myocytes.
V. Paajanen and M. Vornanen (2004)
Am J Physiol Regulatory Integrative Comp Physiol 286, R405-R415
   Abstract »    Full Text »    PDF »
Impaired Intracellular Energetic Communication in Muscles from Creatine Kinase and Adenylate Kinase (M-CK/AK1) Double Knock-out Mice.
E. Janssen, A. Terzic, B. Wieringa, and P. P. Dzeja (2003)
J. Biol. Chem. 278, 30441-30449
   Abstract »    Full Text »    PDF »
Phosphotransfer networks and cellular energetics.
P. P. Dzeja and A. Terzic (2003)
J. Exp. Biol. 206, 2039-2047
   Abstract »    Full Text »    PDF »
Knockout of Kir6.2 negates ischemic preconditioning-induced protection of myocardial energetics.
R. J. Gumina, D. Pucar, P. Bast, D. M. Hodgson, C. E. Kurtz, P. P. Dzeja, T. Miki, S. Seino, and A. Terzic (2003)
Am J Physiol Heart Circ Physiol 284, H2106-H2113
   Abstract »    Full Text »    PDF »
Cellular remodeling in heart failure disrupts KATP channel-dependent stress tolerance.
D. M. Hodgson, L. V. Zingman, G. C. Kane, C. Perez-Terzic, M. Bienengraeber, C. Ozcan, R. J. Gumina, D. Pucar, F. O'Coclain, D. L. Mann, et al. (2003)
EMBO J. 22, 1732-1742
   Abstract »    Full Text »    PDF »
Failing atrial myocardium: energetic deficits accompany structural remodeling and electrical instability.
Y.-M. Cha, P. P. Dzeja, W. K. Shen, A. Jahangir, C. Y. T. Hart, A. Terzic, and M. M. Redfield (2003)
Am J Physiol Heart Circ Physiol 284, H1313-H1320
   Abstract »    Full Text »    PDF »
Kir6.2 is required for adaptation to stress.
L. V. Zingman, D. M. Hodgson, P. H. Bast, G. C. Kane, C. Perez-Terzic, R. J. Gumina, D. Pucar, M. Bienengraeber, P. P. Dzeja, T. Miki, et al. (2002)
PNAS 99, 13278-13283
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882