Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Biol. Chem. 277 (49): 47671-47678

© 2002 by The American Society for Biochemistry and Molecular Biology, Inc.

Intercellular Transfer of the Cellular Prion Protein*

Tong LiuDagger , Ruliang LiDagger , Tao PanDagger , Dacai LiuDagger , Robert B. PetersenDagger , Boon-Seng WongDagger §, Pierluigi GambettiDagger , and Man Sun Sy||

From the Dagger  Division of Neuropathology, Institute of Pathology,  Cancer Research Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106

The cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI)-anchored protein. We investigated whether PrPC can move from one cell to another cell in a cell model. Little PrPC transfer was detected when a PrPC expressing human neuroblastoma cell line was cultured with the human erythroleukemia cells IA lacking PrPC. Efficient transfer of PrPC was detected with the presence of phorbol 12-myristate 13-acetate, an activator of protein kinase C. Maximum PrPC transfer was observed when both donor and recipient cells were activated. Furthermore, PrPC transfer required the GPI anchor and direct cell to cell contact. However, intercellular protein transfer is not limited to PrPC, another GPI-anchored protein, CD90, also transfers from the donor cells to acceptor cells after cellular activation. Therefore, this transfer process is GPI-anchor and cellular activation dependent. These findings suggest that the intercellular transfer of GPI-anchored proteins is a regulated process, and may have implications for the pathogenesis of prion disease.

* This work was supported in part by National Institutes of Health Grant AG14359 and a contract from the Prion Developmental Laboratory. The Confocal Microscopy Facility was supported by National Institutes of Health Grant PO30CA43703.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

§ Recipient of a Medical Research Scientist Award from the National Medical Research Council, Singapore.

|| To whom correspondence should be addressed: BRB, Rm. 933, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland OH 44106. Tel.: 216-368-1268; Fax: 216-368-1357; E-mail:

Copyright © 2002 by The American Society for Biochemistry and Molecular Biology, Inc.

Amyloid-{beta}-induced Synapse Damage Is Mediated via Cross-linkage of Cellular Prion Proteins.
C. Bate and A. Williams (2011)
J. Biol. Chem. 286, 37955-37963
   Abstract »    Full Text »    PDF »
Monoacylated Cellular Prion Protein Modifies Cell Membranes, Inhibits Cell Signaling, and Reduces Prion Formation.
C. Bate and A. Williams (2011)
J. Biol. Chem. 286, 8752-8758
   Abstract »    Full Text »    PDF »
Intercellular Transfer of Proteins as Identified by Stable Isotope Labeling of Amino Acids in Cell Culture.
M. Li, J. M. Aliotta, J. M. Asara, Q. Wu, M. S. Dooner, L. D. Tucker, A. Wells, P. J. Quesenberry, and B. Ramratnam (2010)
J. Biol. Chem. 285, 6285-6297
   Abstract »    Full Text »    PDF »
GPI anchoring facilitates propagation and spread of misfolded Sup35 aggregates in mammalian cells.
J. O. Speare, D. K. Offerdahl, A. Hasenkrug, A. B. Carmody, and G. S. Baron (2010)
EMBO J. 29, 782-794
   Abstract »    Full Text »    PDF »
Prions: Protein Aggregation and Infectious Diseases.
A. Aguzzi and A. M. Calella (2009)
Physiol Rev 89, 1105-1152
   Abstract »    Full Text »    PDF »
Cells Expressing Anchorless Prion Protein Are Resistant to Scrapie Infection.
K. L. McNally, A. E. Ward, and S. A. Priola (2009)
J. Virol. 83, 4469-4475
   Abstract »    Full Text »    PDF »
Physical transfer of membrane and cytoplasmic components as a general mechanism of cell-cell communication.
X. Niu, K. Gupta, J. T. Yang, M. J. Shamblott, and A. Levchenko (2009)
J. Cell Sci. 122, 600-610
   Abstract »    Full Text »    PDF »
Requirement of Glycosylphosphatidylinositol Anchor of Cripto-1 for trans Activity as a Nodal Co-receptor.
K. Watanabe, S. Hamada, C. Bianco, M. Mancino, T. Nagaoka, M. Gonzales, V. Bailly, L. Strizzi, and D. S. Salomon (2007)
J. Biol. Chem. 282, 35772-35786
   Abstract »    Full Text »    PDF »
Efficient dissemination of prions through preferential transmission to nearby cells.
S. Paquet, C. Langevin, J. Chapuis, G. S. Jackson, H. Laude, and D. Vilette (2007)
J. Gen. Virol. 88, 706-713
   Abstract »    Full Text »    PDF »
Prions and retroviruses: an endosomal rendezvous?.
A. Ashok and R. S. Hegde (2006)
EMBO Rep. 7, 685-687
   Full Text »    PDF »
Mouse-Adapted Scrapie Infection of SN56 Cells: Greater Efficiency with Microsome-Associated versus Purified PrP-res.
G. S. Baron, A. C. Magalhaes, M. A. M. Prado, and B. Caughey (2006)
J. Virol. 80, 2106-2117
   Abstract »    Full Text »    PDF »
Truncated Prion Protein and Doppel Are Myelinotoxic in the Absence of Oligodendrocytic PrPC.
I. Radovanovic, N. Braun, O. T. Giger, K. Mertz, G. Miele, M. Prinz, B. Navarro, and A. Aguzzi (2005)
J. Neurosci. 25, 4879-4888
   Abstract »    Full Text »    PDF »
Genetic Mapping of Activity Determinants within Cellular Prion Proteins: N-TERMINAL MODULES IN PrPC OFFSET PRO-APOPTOTIC ACTIVITY OF THE DOPPEL HELIX B/B' REGION.
B. Drisaldi, J. Coomaraswamy, P. Mastrangelo, B. Strome, J. Yang, J. C. Watts, M. A. Chishti, M. Marvi, O. Windl, R. Ahrens, et al. (2004)
J. Biol. Chem. 279, 55443-55454
   Abstract »    Full Text »    PDF »
Cellular Prion Protein Is Expressed in a Subset of Neuroendocrine Cells of the Rat Gastrointestinal Tract.
Z. Marcos, K. Pffeifer, M. E. Bodegas, M. P. Sesma, and L. Guembe (2004)
Journal of Histochemistry & Cytochemistry 52, 1357-1365
   Abstract »    Full Text »    PDF »
Cells release prions in association with exosomes.
B. Fevrier, D. Vilette, F. Archer, D. Loew, W. Faigle, M. Vidal, H. Laude, and G. Raposo (2004)
PNAS 101, 9683-9688
   Abstract »    Full Text »    PDF »
Cytosolic Prion Protein in Neurons.
A. Mironov Jr, D. Latawiec, H. Wille, E. Bouzamondo-Bernstein, G. Legname, R. A. Williamson, D. Burton, S. J. DeArmond, S. B. Prusiner, and P. J. Peters (2003)
J. Neurosci. 23, 7183-7193
   Abstract »    Full Text »    PDF »
Expression of truncated PrP targeted to Purkinje cells of PrP knockout mice causes Purkinje cell death and ataxia.
E. Flechsig, I. Hegyi, R. Leimeroth, A. Zuniga, D. Rossi, A. Cozzio, P. Schwarz, T. Rulicke, J. Gotz, A. Aguzzi, et al. (2003)
EMBO J. 22, 3095-3101
   Abstract »    Full Text »    PDF »
Immune system and peripheral nerves in propagation of prions to CNS.
A. Aguzzi, F. L Heppner, M. Heikenwalder, M. Prinz, K. Mertz, H. Seeger, and M. Glatzel (2003)
Br. Med. Bull. 66, 141-159
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882