Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Biol. Chem. 278 (25): 22482-22491

© 2003 by The American Society for Biochemistry and Molecular Biology, Inc.

The M2 Muscarinic G-protein-coupled Receptor Is Voltage-sensitive*

Yair Ben-Chaim {ddagger}, Oded Tour {ddagger} §, Nathan Dascal ¶, Itzchak Parnas {ddagger} ||, and Hanna Parnas {ddagger} **

{ddagger}The Otto Loewi Minerva Center for Cellular and Molecular Neurobiology, the Hebrew University, Jerusalem 91904 and the Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv 69978, Israel

Abstract: G-protein coupled receptors are not considered to exhibit voltage sensitivity. Here, using Xenopus oocytes, we show that the M2 muscarinic receptor (m2R) is voltage-sensitive. The m2R-mediated potassium channel (GIRK) currents were used to assay the activity of m2R. We found that the apparent affinity of m2R toward acetylcholine (ACh) was reduced upon depolarization. Binding experiments of [3H]ACh to individual oocytes expressing m2R confirmed the electrophysiological findings. When the GIRK channels were activated either by overexpression of G{beta}{gamma} subunits or by injection of GTP{gamma}S, the ratio between the currents measured at –60 mV and +40 mV was the same as for the basal activity of the GIRK channel. Thus, the steps downstream to agonist activation of m2R are not voltage-sensitive. We further found that, in contrast to m2R, the apparent affinity of m1R was increased upon depolarization. We also found that the voltage sensitivity of binding of [3H]ACh to oocytes expressing m2R was greatly diminished following pretreatment with pertussis toxin. The cumulative results suggest that m2R is, by itself, voltage-sensitive. Furthermore, the voltage sensitivity does not reside in the ACh binding site, rather, it most likely resides in the receptor region that couples to the G-protein.

Received for publication February 3, 2003. Revision received April 6, 2003.

* This work was supported by Grant SFB 391 (to I. P. and H. P.) from the Deutsche Forschungsgemeinschaft, Germany, and by Grant GM 56260 from the National Institutes of Health and a grant from the USA-Israel Binational Science Foundation (to N. D.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

§ Present address: Dept. of Pharmacology, University of California-San Diego, La Jolla, CA 92093-0647.

|| The Greenfield Professor for Neurobiology.

** To whom correspondence should be addressed. Tel.: 972-2-658-5900; Fax: 972-2-658-4174; E-mail: hanna{at}

Treatment of experimental asthma using a single small molecule with anti-inflammatory and BK channel-activating properties.
M. P. Goldklang, J. F. Perez-Zoghbi, J. Trischler, T. Nkyimbeng, S. I. Zakharov, T. Shiomi, T. Zelonina, A. R. Marks, J. M. D'Armiento, and S. O. Marx (2013)
FASEB J 27, 4975-4986
   Abstract »    Full Text »    PDF »
Voltage sensitivity of M2 muscarinic receptors underlies the delayed rectifier-like activation of ACh-gated K+ current by choline in feline atrial myocytes.
R. A. Navarro-Polanco, I. A. Arechiga-Figueroa, P. D. Salazar-Fajardo, D. E. Benavides-Haro, J. C. Rodriguez-Elias, F. B. Sachse, M. Tristani-Firouzi, J. A. Sanchez-Chapula, and E. G. Moreno-Galindo (2013)
J. Physiol. 591, 4273-4286
   Abstract »    Full Text »    PDF »
Voltage regulates adrenergic receptor function.
A. Rinne, A. Birk, and M. Bunemann (2013)
PNAS 110, 1536-1541
   Abstract »    Full Text »    PDF »
Voltage-independent inhibition of CaV2.2 channels is delimited to a specific region of the membrane potential in rat SCG neurons.
O. Vivas, I. Arenas, and D. E. Garcia (2012)
Acta Biochim Biophys Sin 44, 544-549
   Abstract »    Full Text »    PDF »
Chloride in airway smooth muscle: the ignored anion no longer?.
G. Gallos, P. Yim, and C. W. Emala (2012)
Am J Physiol Lung Cell Mol Physiol 302, L733-L735
   Abstract »    Full Text »    PDF »
Depolarization induces a conformational change in the binding site region of the M2 muscarinic receptor.
N. Dekel, M. F. Priest, H. Parnas, I. Parnas, and F. Bezanilla (2012)
PNAS 109, 285-290
   Abstract »    Full Text »    PDF »
Membrane Depolarization Increases Membrane PtdIns(4,5)P2 Levels through Mechanisms Involving PKC {beta}II and PI4 Kinase.
X. Chen, X. Zhang, C. Jia, J. Xu, H. Gao, G. Zhang, X. Du, and H. Zhang (2011)
J. Biol. Chem. 286, 39760-39767
   Abstract »    Full Text »    PDF »
Muscarinic receptors: electrifying new insights.
A. Tamuleviciute and R. Brookfield (2011)
J. Physiol. 589, 4411-4412
   Full Text »    PDF »
Metabotropic Regulation of RhoA/Rho-Associated Kinase by L-type Ca2+ Channels: New Mechanism for Depolarization-Evoked Mammalian Arterial Contraction.
M. Fernandez-Tenorio, C. Porras-Gonzalez, A. Castellano, A. del Valle-Rodriguez, J. Lopez-Barneo, and J. Urena (2011)
Circ. Res. 108, 1348-1357
   Abstract »    Full Text »    PDF »
Novel expression of a functional glycine receptor chloride channel that attenuates contraction in airway smooth muscle.
P. D. Yim, G. Gallos, D. Xu, Y. Zhang, and C. W. Emala (2011)
FASEB J 25, 1706-1717
   Abstract »    Full Text »    PDF »
IKACh at the whim of a capricious M2R.
R. Olcese (2011)
J. Physiol. 589, 1869-1870
   Full Text »    PDF »
Conformational changes in the M2 muscarinic receptor induced by membrane voltage and agonist binding.
R. A. Navarro-Polanco, E. G. M. Galindo, T. Ferrer-Villada, M. Arias, J. R. Rigby, J. A. Sanchez-Chapula, and M. Tristani-Firouzi (2011)
J. Physiol. 589, 1741-1753
   Abstract »    Full Text »    PDF »
Relaxation gating of the acetylcholine-activated inward rectifier K+ current is mediated by intrinsic voltage sensitivity of the muscarinic receptor.
E. G. Moreno-Galindo, J. A. Sanchez-Chapula, F. B. Sachse, J. A. Rodriguez-Paredes, M. Tristani-Firouzi, and R. A. Navarro-Polanco (2011)
J. Physiol. 589, 1755-1767
   Abstract »    Full Text »    PDF »
A novel fast mechanism for GPCR-mediated signal transduction--control of neurotransmitter release.
Y. M. Kupchik, O. Barchad-Avitzur, J. Wess, Y. Ben-Chaim, I. Parnas, and H. Parnas (2011)
J. Cell Biol. 192, 137-151
   Abstract »    Full Text »    PDF »
Direct voltage control of endogenous lysophosphatidic acid G-protein-coupled receptors in Xenopus oocytes.
J. Martinez-Pinna, I. S. Gurung, M. P. Mahaut-Smith, and A. s. Morales (2010)
J. Physiol. 588, 1683-1693
   Abstract »    Full Text »    PDF »
Depolarization Increases Phosphatidylinositol (PI) 4,5-Bisphosphate Level and KCNQ Currents through PI 4-Kinase Mechanisms.
X. Zhang, X. Chen, C. Jia, X. Geng, X. Du, and H. Zhang (2010)
J. Biol. Chem. 285, 9402-9409
   Abstract »    Full Text »    PDF »
A Fluorescence Resonance Energy Transfer-based M2 Muscarinic Receptor Sensor Reveals Rapid Kinetics of Allosteric Modulation.
M. Maier-Peuschel, N. Frolich, C. Dees, L. G. Hommers, C. Hoffmann, V. O. Nikolaev, and M. J. Lohse (2010)
J. Biol. Chem. 285, 8793-8800
   Abstract »    Full Text »    PDF »
Dynamic aspects of functional regulation of the ATP receptor channel P2X2.
Y. Kubo, Y. Fujiwara, B. Keceli, and K. Nakajo (2009)
J. Physiol. 587, 5317-5324
   Abstract »    Full Text »    PDF »
Voltage- and [ATP]-dependent Gating of the P2X2 ATP Receptor Channel.
Y. Fujiwara, B. Keceli, K. Nakajo, and Y. Kubo (2009)
J. Gen. Physiol. 133, 93-109
   Abstract »    Full Text »    PDF »
Molecular mechanisms that control initiation and termination of physiological depolarization-evoked transmitter release.
Y. M. Kupchik, G. Rashkovan, L. Ohana, T. Keren-Raifman, N. Dascal, H. Parnas, and I. Parnas (2008)
PNAS 105, 4435-4440
   Abstract »    Full Text »    PDF »
Differential Regulation of Two Distinct Voltage-Dependent Sodium Currents by Group III Metabotropic Glutamate Receptor Activation in Insect Pacemaker Neurons.
C. Lavialle-Defaix, H. Gautier, A. Defaix, B. Lapied, and F. Grolleau (2006)
J Neurophysiol 96, 2437-2450
   Abstract »    Full Text »    PDF »
Modulation of Gq-Protein-Coupled Inositol Trisphosphate and Ca2+ Signaling by the Membrane Potential.
D. Billups, B. Billups, R. A. J. Challiss, and S. R. Nahorski (2006)
J. Neurosci. 26, 9983-9995
   Abstract »    Full Text »    PDF »
The Metabotropic Glutamate G-protein-coupled Receptors mGluR3 and mGluR1a Are Voltage-sensitive.
L. Ohana, O. Barchad, I. Parnas, and H. Parnas (2006)
J. Biol. Chem. 281, 24204-24215
   Abstract »    Full Text »    PDF »
Novel Blockade of Protein Kinase A-Mediated Phosphorylation of AMPA Receptors.
A. M. Vanhoose, J. M. Clements, and D. G. Winder (2006)
J. Neurosci. 26, 1138-1145
   Abstract »    Full Text »    PDF »
Depolarization Initiates Phasic Acetylcholine Release by Relief of a Tonic Block Imposed by Presynaptic M2 Muscarinic Receptors.
H. Parnas, I. Slutsky, G. Rashkovan, I. Silman, J. Wess, and I. Parnas (2005)
J Neurophysiol 93, 3257-3269
   Abstract »    Full Text »    PDF »
Direct Voltage Control of Signaling via P2Y1 and Other G{alpha}q-coupled Receptors.
J. Martinez-Pinna, I. S. Gurung, C. Vial, C. Leon, C. Gachet, R. J. Evans, and M. P. Mahaut-Smith (2005)
J. Biol. Chem. 280, 1490-1498
   Abstract »    Full Text »    PDF »
Sensitivity limits for voltage control of P2Y receptor-evoked Ca2+ mobilization in the rat megakaryocyte.
J. Martinez-Pinna, G. Tolhurst, I. S. Gurung, J. I. Vandenberg, and M. P. Mahaut-Smith (2004)
J. Physiol. 555, 61-70
   Abstract »    Full Text »    PDF »
Potential Synergy: Voltage-Driven Steps in Receptor-G Protein Coupling and Beyond.
T. B. Bolton and A. V. Zholos (2003)
Sci. STKE 2003, pe52
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882