Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Biol. Chem. 278 (3): 1403-1406

© 2003 by The American Society for Biochemistry and Molecular Biology, Inc.

ACCELERATED PUBLICATION
Ubiquitylation of MEKK1 Inhibits Its Phosphorylation of MKK1 and MKK4 and Activation of the ERK1/2 and JNK Pathways*

James A. Witowsky and Gary L. JohnsonDagger

From the Department of Pharmacology, University of Colorado Health Sciences Center and University of Colorado Cancer Center, Denver, Colorado 80262

MEKK1 is a MAPK kinase kinase that is activated in response to stimuli that alter the cytoskeleton and cell shape. MEKK1 phosphorylates and activates MKK1 and MKK4, leading to ERK1/2 and JNK activation. MEKK1 has a plant homeobox domain (PHD) that has been shown to have E3 ligase activity. (Lu, Z., Xu, S., Joazeiro, C., Cobb, M. H., and Hunter, T. (2002) Mol. Cell 9, 945-956). MEKK1 kinase activity is required for ubiquitylation of MEKK1. MEKK1 ubiquitylation is inhibited by mutation of cysteine 441 to alanine (C441A) within the PHD. The functional consequence of MEKK1 ubiquitylation is the inhibition of MEKK1 catalyzed phosphorylation of MKK1 and MKK4 resulting in inhibition of ERK1/2 and JNK activation. The C441A mutation within the PHD of MEKK1 prevents ubiquitylation and preserves the ability of MEKK1 to catalyze MKK1 and MKK4 phosphorylation. MEKK1 ubiquitylation represents a mechanism for inhibiting the ability of a protein kinase to phosphorylate substrates and regulate downstream signaling pathways.


* This work was supported by National Institutes of Health Grant DK37871.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Dagger To whom correspondence should be addressed: Dept. of Pharmacology, Rm. 2809, SOM, University of Colorado Health Sciences Center, 4200 East Ninth Ave., Denver, CO 80262. Fax: 303-315-1022; E-mail: gary.johnson@uchsc.edu.


Copyright © 2003 by The American Society for Biochemistry and Molecular Biology, Inc.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
A comprehensive pathway map of epidermal growth factor receptor signaling.
K. Oda, Y. Matsuoka, A. Funahashi, and H. Kitano (2014)
Mol Syst Biol 1, 2005.0010
   Abstract »    Full Text »    PDF »
A comprehensive map of the toll-like receptor signaling network.
K. Oda and H. Kitano (2014)
Mol Syst Biol 2, 2006.0015
   Abstract »    Full Text »    PDF »
MAP3K1: Genomic Alterations in Cancer and Function in Promoting Cell Survival or Apoptosis.
T. T. Pham, S. P. Angus, and G. L. Johnson (2013)
Genes & Cancer
   Abstract »    Full Text »    PDF »
Mammalian MAPK Signal Transduction Pathways Activated by Stress and Inflammation: A 10-Year Update.
J. M. Kyriakis and J. Avruch (2012)
Physiol Rev 92, 689-737
   Abstract »    Full Text »    PDF »
Pak1 as a Novel Therapeutic Target for Antihypertrophic Treatment in the Heart.
W. Liu, M. Zi, R. Naumann, S. Ulm, J. Jin, D. M. Taglieri, S. Prehar, J. Gui, H. Tsui, R.-P. Xiao, et al. (2011)
Circulation 124, 2702-2715
   Abstract »    Full Text »    PDF »
Genetic Variations in Multiple Drug Action Pathways and Survival in Advanced Stage Non-Small Cell Lung Cancer Treated with Chemotherapy.
Y. Li, Z. Sun, J. M. Cunningham, M. C. Aubry, J. A. Wampfler, G. A. Croghan, C. Johnson, D. Wu, J. A. Aakre, J. Molina, et al. (2011)
Clin. Cancer Res. 17, 3830-3840
   Abstract »    Full Text »    PDF »
Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin.
H. Wang, A. Matsuzawa, S. A. Brown, J. Zhou, C. S. Guy, P.-H. Tseng, K. Forbes, T. P. Nicholson, P. W. Sheppard, H. Hacker, et al. (2008)
PNAS 105, 20197-20202
   Abstract »    Full Text »    PDF »
Activation of TORC1 Transcriptional Coactivator through MEKK1-induced Phosphorylation.
Y.-T. Siu, Y.-P. Ching, and D.-Y. Jin (2008)
Mol. Biol. Cell 19, 4750-4761
   Abstract »    Full Text »    PDF »
Mitogen-activated Protein Kinase Kinase Kinase 1 Protects against Nickel-induced Acute Lung Injury.
M. Mongan, Z. Tan, L. Chen, Z. Peng, M. Dietsch, B. Su, G. Leikauf, and Y. Xia (2008)
Toxicol. Sci. 104, 405-411
   Abstract »    Full Text »    PDF »
MEKK1 Mediates the Ubiquitination and Degradation of c-Jun in Response to Osmotic Stress.
Y. Xia, J. Wang, S. Xu, G. L. Johnson, T. Hunter, and Z. Lu (2007)
Mol. Cell. Biol. 27, 510-517
   Abstract »    Full Text »    PDF »
Regulation of G Protein and Mitogen-Activated Protein Kinase Signaling by Ubiquitination: Insights From Model Organisms.
Y. Wang and H. G. Dohlman (2006)
Circ. Res. 99, 1305-1314
   Abstract »    Full Text »    PDF »
Proteasome Inhibition Down-regulates Endothelial Nitric-oxide Synthase Phosphorylation and Function.
Q. Wei and Y. Xia (2006)
J. Biol. Chem. 281, 21652-21659
   Abstract »    Full Text »    PDF »
Dynamic Positive Feedback Phosphorylation of Mixed Lineage Kinase 3 by JNK Reversibly Regulates Its Distribution to Triton-soluble Domains.
K. A. Schachter, Y. Du, A. Lin, and K. A. Gallo (2006)
J. Biol. Chem. 281, 19134-19144
   Abstract »    Full Text »    PDF »
Site-specific Monoubiquitination of I{kappa}B Kinase IKKbeta Regulates Its Phosphorylation and Persistent Activation.
R. S. Carter, K. N. Pennington, P. Arrate, E. M. Oltz, and D. W. Ballard (2005)
J. Biol. Chem. 280, 43272-43279
   Abstract »    Full Text »    PDF »
Ubiquitin Chains in the Ladder of MAPK Signaling.
A. Laine and Z. Ronai (2005)
Sci. STKE 2005, re5
   Abstract »    Full Text »    PDF »
Deltex Regulates T-Cell Activation by Targeted Degradation of Active MEKK1.
W.-H. Liu and M.-Z. Lai (2005)
Mol. Cell. Biol. 25, 1367-1378
   Abstract »    Full Text »    PDF »
Differential Regulation of G Protein {alpha} Subunit Trafficking by Mono- and Polyubiquitination.
Y. Wang, L. A. Marotti Jr., M. J. Lee, and H. G. Dohlman (2005)
J. Biol. Chem. 280, 284-291
   Abstract »    Full Text »    PDF »
Germinal Center Kinase Is Required for Optimal Jun N-Terminal Kinase Activation by Toll-Like Receptor Agonists and Is Regulated by the Ubiquitin Proteasome System and Agonist-Induced, TRAF6-Dependent Stabilization.
J. Zhong and J. M. Kyriakis (2004)
Mol. Cell. Biol. 24, 9165-9175
   Abstract »    Full Text »    PDF »
Analysis of the Role of Ubiquitin-interacting Motifs in Ubiquitin Binding and Ubiquitylation.
S. L. H. Miller, E. Malotky, and J. P. O'Bryan (2004)
J. Biol. Chem. 279, 33528-33537
   Abstract »    Full Text »    PDF »
Tal, a Tsg101-specific E3 ubiquitin ligase, regulates receptor endocytosis and retrovirus budding.
I. Amit, L. Yakir, M. Katz, Y. Zwang, M. D. Marmor, A. Citri, K. Shtiegman, I. Alroy, S. Tuvia, Y. Reiss, et al. (2004)
Genes & Dev. 18, 1737-1752
   Abstract »    Full Text »    PDF »
Non-traditional Functions of Ubiquitin and Ubiquitin-binding Proteins.
J. D. Schnell and L. Hicke (2003)
J. Biol. Chem. 278, 35857-35860
   Full Text »    PDF »
Regulation of Ste7 Ubiquitination by Ste11 Phosphorylation and the Skp1-Cullin-F-box Complex.
Y. Wang, Q. Ge, D. Houston, J. Thorner, B. Errede, and H. G. Dohlman (2003)
J. Biol. Chem. 278, 22284-22289
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882