Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Biol. Chem. 278 (35): 33465-33473

© 2003 by The American Society for Biochemistry and Molecular Biology, Inc.

Exchange Factors of the RasGRP Family Mediate Ras Activation in the Golgi*,

María J. Caloca {ddagger}, José L. Zugaza {ddagger}, and Xosé R. Bustelo §

Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, University of Salamanca, Consejo Superior de Investigaciones Científicas, Campus Unamuno, E-37007 Salamanca, Spain

Abstract: H-Ras and N-Ras become activated both at the plasma membrane and in endomembrane structures such as the Golgi apparatus. This compartmentalized activation is relevant from a signaling standpoint, because effector molecules can become activated differently depending on the region of the cell where Ras proteins are activated. An unsolved question in this new regulatory mechanism is the understanding of how Ras proteins become activated in endomembranes. To approach this problem, we have studied the subcellular distribution and activities of a number of Ras guanosine nucleotide exchange factors. Our results indicate that Ras activation at the plasma membrane and endoplasmic reticulum is an unspecific process that can be achieved by most Ras activators. In contrast, GTP loading of Ras at the Golgi is only induced by members of the Ras guanosine nucleotide releasing protein family. In agreement with these observations, Ras guanosine nucleotide releasing proteins are the only Ras activators showing localization in the Golgi. These results indicate that the compartmentalized activation of effector pathways by Ras proteins depends not only on the specific localization of the GTPases but also in the availability of GDP/GTP exchange factors capable of activating Ras proteins in specific subcellular compartments.


Received for publication March 19, 2003. Revision received May 6, 2003.

* This work was supported by the United States National Cancer Institute, National Institutes of Health Grant CA7373501, British Association for International Cancer Research Grant 00-061, and Programa General del Conocimiento PM99–0093 (Spanish Ministry of Science and Technology). The Centro de Investigación del Cáncer was supported by endowments from the Consejo Superior de Investigaciones Científicas, University of Salamanca, Castilla-León Autonomous Government, the National Cancer Network of the Spanish Fondo de Investigaciones Sanitarias (Spanish Ministry of Health), the Foundation for Cancer Research of Salamanca, and the Solórzano and Moraza Foundations. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.


The on-line version of this article (available at http://www.jbc.org) contains Figs. S1 and S2.

{ddagger} Investigators from the Ramón y Cajal Program (Spanish Ministry of Science and Technology) associated with the University of Salamanca.

§ To whom correspondence should be addressed. Tel.: 34-923-294802; Fax: 34-923-294743; E-mail: xbustelo{at}usal.es.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Multi-institutional phase 2 clinical and pharmacogenomic trial of tipifarnib plus etoposide for elderly adults with newly diagnosed acute myelogenous leukemia.
J. E. Karp, T. I. Vener, M. Raponi, E. K. Ritchie, B. D. Smith, S. D. Gore, L. E. Morris, E. J. Feldman, J. M. Greer, S. Malek, et al. (2012)
Blood 119, 55-63
   Abstract »    Full Text »    PDF »
p23/Tmp21 Associates with Protein Kinase C{delta} (PKC{delta}) and Modulates Its Apoptotic Function.
H. Wang, L. Xiao, and M. G. Kazanietz (2011)
J. Biol. Chem. 286, 15821-15831
   Abstract »    Full Text »    PDF »
Phosphoinositide 3-Kinase Regulates Plasma Membrane Targeting of the Ras-specific Exchange Factor RasGRP1.
B. Zahedi, H.-j. Goo, N. Beaulieu, G. Tazmini, R. J. Kay, and R. B. Cornell (2011)
J. Biol. Chem. 286, 12712-12723
   Abstract »    Full Text »    PDF »
Differential Regulation of RasGAPs in Cancer.
T. Grewal, M. Koese, F. Tebar, and C. Enrich (2011)
Genes & Cancer 2, 288-297
   Abstract »    Full Text »    PDF »
Ras, an Actor on Many Stages: Posttranslational Modifications, Localization, and Site-Specified Events.
I. Arozarena, F. Calvo, and P. Crespo (2011)
Genes & Cancer 2, 182-194
   Abstract »    Full Text »    PDF »
The kinetics of {alpha}IIb{beta}3 activation determines the size and stability of thrombi in mice: implications for antiplatelet therapy.
M. Stolla, L. Stefanini, R. C. Roden, M. Chavez, J. Hirsch, T. Greene, T. D. Ouellette, S. F. Maloney, S. L. Diamond, M. Poncz, et al. (2011)
Blood 117, 1005-1013
   Abstract »    Full Text »    PDF »
Regulation of Ras Localization by Acylation Enables a Mode of Intracellular Signal Propagation.
A. Lorentzen, A. Kinkhabwala, O. Rocks, N. Vartak, and P. I. H. Bastiaens (2010)
Science Signaling 3, ra68
   Abstract »    Full Text »    PDF »
RasGRP1 Is Essential for Ras Activation by the Tumor Promoter 12-O-Tetradecanoylphorbol-13-acetate in Epidermal Keratinocytes.
A. Sharma, C. T. Luke, N. A. Dower, J. C. Stone, and P. S. Lorenzo (2010)
J. Biol. Chem. 285, 15724-15730
   Abstract »    Full Text »    PDF »
The Deubiquitinating Enzyme USP17 Blocks N-Ras Membrane Trafficking and Activation but Leaves K-Ras Unaffected.
M. de la Vega, J. F. Burrows, C. McFarlane, U. Govender, C. J. Scott, and J. A. Johnston (2010)
J. Biol. Chem. 285, 12028-12036
   Abstract »    Full Text »    PDF »
p23/Tmp21 Differentially Targets the Rac-GAP {beta}2-Chimaerin and Protein Kinase C via Their C1 Domains.
H. Wang and M. G. Kazanietz (2010)
Mol. Biol. Cell 21, 1398-1408
   Abstract »    Full Text »    PDF »
RasGRP1 Regulates Antigen-Induced Developmental Programming by Naive CD8 T Cells.
J. J. Priatel, X. Chen, Y.-H. Huang, M. T. Chow, L. A. Zenewicz, J. J. Coughlin, H. Shen, J. C. Stone, R. Tan, and H. S. Teh (2010)
J. Immunol. 184, 666-676
   Abstract »    Full Text »    PDF »
RIAM Regulates the Cytoskeletal Distribution and Activation of PLC-{gamma}1 in T Cells.
N. Patsoukis, E. M. Lafuente, P. Meraner, J. s. Kim, D. Dombkowski, L. Li, and V. A. Boussiotis (2009)
Science Signaling 2, ra79
   Abstract »    Full Text »    PDF »
Structural and Spatial Determinants Regulating TC21 Activation by RasGRF Family Nucleotide Exchange Factors.
F. Calvo and P. Crespo (2009)
Mol. Biol. Cell 20, 4289-4302
   Abstract »    Full Text »    PDF »
CalDAG-GEFI is at the nexus of calcium-dependent platelet activation.
L. Stefanini, R. C. Roden, and W. Bergmeier (2009)
Blood 114, 2506-2514
   Abstract »    Full Text »    PDF »
A clathrin-dependent pathway leads to KRas signaling on late endosomes en route to lysosomes.
A. Lu, F. Tebar, B. Alvarez-Moya, C. Lopez-Alcala, M. Calvo, C. Enrich, N. Agell, T. Nakamura, M. Matsuda, and O. Bachs (2009)
J. Cell Biol. 184, 863-879
   Abstract »    Full Text »    PDF »
CD147 Inhibits the Nuclear Factor of Activated T-cells by Impairing Vav1 and Rac1 Downstream Signaling.
S. Ruiz, A. Castro-Castro, and X. R. Bustelo (2008)
J. Biol. Chem. 283, 5554-5566
   Abstract »    Full Text »    PDF »
The Diacylglycerol-dependent Translocation of Ras Guanine Nucleotide-releasing Protein 4 inside a Human Mast Cell Line Results in Substantial Phenotypic Changes, Including Expression of Interleukin 13 Receptor {alpha}2.
G. P. Katsoulotos, M. Qi, J. C. Qi, K. Tanaka, W. E. Hughes, T. J. Molloy, R. Adachi, R. L. Stevens, and S. A. Krilis (2008)
J. Biol. Chem. 283, 1610-1621
   Abstract »    Full Text »    PDF »
RasGRF2, a Guanosine Nucleotide Exchange Factor for Ras GTPases, Participates in T-Cell Signaling Responses.
S. Ruiz, E. Santos, and X. R. Bustelo (2007)
Mol. Cell. Biol. 27, 8127-8142
   Abstract »    Full Text »    PDF »
Defective Expression of Ras Guanyl Nucleotide-Releasing Protein 1 in a Subset of Patients with Systemic Lupus Erythematosus.
S. Yasuda, R. L. Stevens, T. Terada, M. Takeda, T. Hashimoto, J. Fukae, T. Horita, H. Kataoka, T. Atsumi, and T. Koike (2007)
J. Immunol. 179, 4890-4900
   Abstract »    Full Text »    PDF »
Diacylglycerol Is Required for the Formation of COPI Vesicles in the Golgi-to-ER Transport Pathway.
I. Fernandez-Ulibarri, M. Vilella, F. Lazaro-Dieguez, E. Sarri, S. E. Martinez, N. Jimenez, E. Claro, I. Merida, K. N.J. Burger, and G. Egea (2007)
Mol. Biol. Cell 18, 3250-3263
   Abstract »    Full Text »    PDF »
Regulation of RasGRP1 by B Cell Antigen Receptor Requires Cooperativity between Three Domains Controlling Translocation to the Plasma Membrane.
N. Beaulieu, B. Zahedi, R. E. Goulding, G. Tazmini, K. V. Anthony, S. L. Omeis, D. R. de Jong, and R. J. Kay (2007)
Mol. Biol. Cell 18, 3156-3168
   Abstract »    Full Text »    PDF »
Unusual Interplay of Two Types of Ras Activators, RasGRP and SOS, Establishes Sensitive and Robust Ras Activation in Lymphocytes.
J. P. Roose, M. Mollenauer, M. Ho, T. Kurosaki, and A. Weiss (2007)
Mol. Cell. Biol. 27, 2732-2745
   Abstract »    Full Text »    PDF »
Growth Factor-dependent AKT Activation and Cell Migration Requires the Function of c-K(B)-Ras Versus Other Cellular Ras Isoforms.
J. Liao, S. M. Planchon, J. C. Wolfman, and A. Wolfman (2006)
J. Biol. Chem. 281, 29730-29738
   Abstract »    Full Text »    PDF »
RasGRP1 Transmits Prodifferentiation TCR Signaling That Is Crucial for CD4 T Cell Development.
J. J. Priatel, X. Chen, S. Dhanji, N. Abraham, and H.-S. Teh (2006)
J. Immunol. 177, 1470-1480
   Abstract »    Full Text »    PDF »
Thematic review series: Lipid Posttranslational Modifications CAAX modification and membrane targeting of Ras.
L. P. Wright and M. R. Philips (2006)
J. Lipid Res. 47, 883-891
   Abstract »    Full Text »    PDF »
Differential effects of bryostatin 1 and 12-O-tetradecanoylphorbol-13-acetate on the regulation and activation of RasGRP1 in mouse epidermal keratinocytes..
M. C. Tuthill, C. E. Oki, and P. S. Lorenzo (2006)
Mol. Cancer Ther. 5, 602-610
   Abstract »    Full Text »    PDF »
Live-cell imaging of endogenous Ras-GTP illustrates predominant Ras activation at the plasma membrane.
M. Augsten, R. Pusch, C. Biskup, K. Rennert, U. Wittig, K. Beyer, A. Blume, R. Wetzker, K. Friedrich, and I. Rubio (2006)
EMBO Rep. 7, 46-51
   Abstract »    Full Text »    PDF »
Distinct Utilization of Effectors and Biological Outcomes Resulting from Site-Specific Ras Activation: Ras Functions in Lipid Rafts and Golgi Complex Are Dispensable for Proliferation and Transformation.
D. Matallanas, V. Sanz-Moreno, I. Arozarena, F. Calvo, L. Agudo-Ibanez, E. Santos, M. T. Berciano, and P. Crespo (2006)
Mol. Cell. Biol. 26, 100-116
   Abstract »    Full Text »    PDF »
K-ras4B and Prenylated Proteins Lacking "Second Signals" Associate Dynamically with Cellular Membranes.
J. R. Silvius, P. Bhagatji, R. Leventis, and D. Terrone (2006)
Mol. Biol. Cell 17, 192-202
   Abstract »    Full Text »    PDF »
Repressible transgenic model of NRAS oncogene-driven mast cell disease in the mouse.
S. M. Wiesner, J. M. Jones, D. E. Hasz, and D. A. Largaespada (2005)
Blood 106, 1054-1062
   Abstract »    Full Text »    PDF »
Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway.
J. S. Goodwin, K. R. Drake, C. Rogers, L. Wright, J. Lippincott-Schwartz, M. R. Philips, and A. K. Kenworthy (2005)
J. Cell Biol. 170, 261-272
   Abstract »    Full Text »    PDF »
A Diacylglycerol-Protein Kinase C-RasGRP1 Pathway Directs Ras Activation upon Antigen Receptor Stimulation of T Cells.
J. P. Roose, M. Mollenauer, V. A. Gupta, J. Stone, and A. Weiss (2005)
Mol. Cell. Biol. 25, 4426-4441
   Abstract »    Full Text »    PDF »
Diacylglycerol kinase {iota} regulates Ras guanyl-releasing protein 3 and inhibits Rap1 signaling.
D. S. Regier, J. Higbee, K. M. Lund, F. Sakane, S. M. Prescott, and M. K. Topham (2005)
PNAS 102, 7595-7600
   Abstract »    Full Text »    PDF »
Activation of RasGRP3 by phosphorylation of Thr-133 is required for B cell receptor-mediated Ras activation.
Y. Aiba, M. Oh-hora, S. Kiyonaka, Y. Kimura, A. Hijikata, Y. Mori, and T. Kurosaki (2004)
PNAS 101, 16612-16617
   Abstract »    Full Text »    PDF »
The P34G Mutation Reduces the Transforming Activity of K-Ras and N-Ras in NIH 3T3 Cells but Not of H-Ras.
J. L. Oliva, N. Zarich, N. Martinez, R. Jorge, A. Castrillo, M. Azanedo, S. Garcia-Vargas, S. Gutierrez-Eisman, A. Juarranz, L. Bosca, et al. (2004)
J. Biol. Chem. 279, 33480-33491
   Abstract »    Full Text »    PDF »
PKC{delta} Associates with and Is Involved in the Phosphorylation of RasGRP3 in Response to Phorbol Esters.
C. Brodie, R. Steinhart, G. Kazimirsky, H. Rubinfeld, T. Hyman, J. N. Ayres, G. M. Hur, A. Toth, D. Yang, S. H. Garfield, et al. (2004)
Mol. Pharmacol. 66, 76-84
   Abstract »    Full Text »    PDF »
Visualizing Ras signalling in real-time.
S. A. Walker and P. J. Lockyer (2004)
J. Cell Sci. 117, 2879-2886
   Abstract »    Full Text »    PDF »
Diacylglycerol-dependent Binding Recruits PKC{theta} and RasGRP1 C1 Domains to Specific Subcellular Localizations in Living T Lymphocytes.
S. Carrasco and I. Merida (2004)
Mol. Biol. Cell 15, 2932-2942
   Abstract »    Full Text »    PDF »
Identification of a Novel Domain of Ras and Rap1 That Directs Their Differential Subcellular Localizations.
K. Nomura, H. Kanemura, T. Satoh, and T. Kataoka (2004)
J. Biol. Chem. 279, 22664-22673
   Abstract »    Full Text »    PDF »
RasGRP1 Sensitizes an Immature B Cell Line to Antigen Receptor-induced Apoptosis.
B. Guilbault and R. J. Kay (2004)
J. Biol. Chem. 279, 19523-19530
   Abstract »    Full Text »    PDF »
F-actin-dependent Translocation of the Rap1 GDP/GTP Exchange Factor RasGRP2.
M. J. Caloca, J. L. Zugaza, M. Vicente-Manzanares, F. Sanchez-Madrid, and X. R. Bustelo (2004)
J. Biol. Chem. 279, 20435-20446
   Abstract »    Full Text »    PDF »
Identification of a Ras GTPase-activating protein regulated by receptor-mediated Ca2+ oscillations.
S. A. Walker, S. Kupzig, D. Bouyoucef, L. C. Davies, T. Tsuboi, T. G. Bivona, G. E. Cozier, P. J. Lockyer, A. Buckler, G. A. Rutter, et al. (2004)
EMBO J. 23, 1749-1760
   Abstract »    Full Text »    PDF »
Ras Activation in Jurkat T cells following Low-Grade Stimulation of the T-Cell Receptor Is Specific to N-Ras and Occurs Only on the Golgi Apparatus.
I. Perez de Castro, T. G. Bivona, M. R. Philips, and A. Pellicer (2004)
Mol. Cell. Biol. 24, 3485-3496
   Abstract »    Full Text »    PDF »
Activation of H-Ras in the Endoplasmic Reticulum by the RasGRF Family Guanine Nucleotide Exchange Factors.
I. Arozarena, D. Matallanas, M. T. Berciano, V. Sanz-Moreno, F. Calvo, M. T. Munoz, G. Egea, M. Lafarga, and P. Crespo (2004)
Mol. Cell. Biol. 24, 1516-1530
   Abstract »    Full Text »    PDF »
RasGRP1 Represents a Novel Non-protein Kinase C Phorbol Ester Signaling Pathway in Mouse Epidermal Keratinocytes.
R. A. Rambaratsingh, J. C. Stone, P. M. Blumberg, and P. S. Lorenzo (2003)
J. Biol. Chem. 278, 52792-52801
   Abstract »    Full Text »    PDF »
Requirement for Ras Guanine Nucleotide Releasing Protein 3 in Coupling Phospholipase C-{gamma}2 to Ras in B Cell Receptor Signaling.
M. Oh-hora, S. Johmura, A. Hashimoto, M. Hikida, and T. Kurosaki (2003)
J. Exp. Med. 198, 1841-1851
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882