Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Biol. Chem. 278 (41): 40330-40336

© 2003 by The American Society for Biochemistry and Molecular Biology, Inc.

Sphingosine Kinase Type 2 Is a Putative BH3-only Protein That Induces Apoptosis*

Hong Liu {ddagger}, Rachelle E. Toman {ddagger} §, Sravan K. Goparaju {ddagger}, Michael Maceyka {ddagger}, Victor E. Nava ¶, Heidi Sankala {ddagger}, Shawn G. Payne ||, Meryem Bektas {ddagger}, Isao Ishii **, Jerold Chun {ddagger}{ddagger}, Sheldon Milstien ||, and Sarah Spiegel {ddagger} §§

{ddagger}Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298-0614, §Interdisciplinary Program in Neuroscience and Department of Biochemistry, Georgetown University Medical Center, Washington, D. C. 20007, Laboratory of Pathology, NCI, National Institutes of Health, Bethesda, Maryland 20892, **Department of Molecular Genetics, National Institute of Neuroscience, Tokyo 187-8502, Japan, {ddagger}{ddagger}Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, ||Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, Maryland 20892

Abstract: There are two isoforms of sphingosine kinase (SphK) that catalyze the formation of sphingosine 1-phosphate, a potent sphingolipid mediator. Whereas SphK1 stimulates growth and survival, here we show that SphK2 enhanced apoptosis in diverse cell types and also suppressed cellular proliferation. Apoptosis was preceded by cytochrome c release and activation of caspase-3. SphK2-induced apoptosis was independent of activation of sphingosine 1-phosphate receptors. Sequence analysis revealed that SphK2 contains a 9-amino acid motif similar to that present in BH3-only proteins, a pro-apoptotic subgroup of the Bcl-2 family. As with other BH3-only proteins, co-immunoprecipitation demonstrated that SphK2 interacted with Bcl-xL. Moreover, site-directed mutation of Leu-219, the conserved leucine residue present in all BH3 domains, markedly suppressed SphK2-induced apoptosis. Hence, the apoptotic effect of SphK2 might be because of its putative BH3 domain.

Received for publication April 29, 2003. Revision received June 18, 2003.

* This work was supported by National Institutes of Health Grants CA61774 (to S. S.) and in part by MH01723 (to J. C.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

§§ To whom correspondence should be addressed. Tel.: 804-828-9330; Fax: 804-828-8999; E-mail: sspiegel{at}

Role of sphingolipids in oestrogen signalling in breast cancer cells: an update.
O. Sukocheva and C. Wadham (2014)
J. Endocrinol. 220, R25-R35
   Abstract »    Full Text »    PDF »
TGF{beta}1 evokes myoblast apoptotic response via a novel signaling pathway involving S1P4 transactivation upstream of Rho-kinase-2 activation.
F. Cencetti, C. Bernacchioni, F. Tonelli, E. Roberts, C. Donati, and P. Bruni (2013)
FASEB J 27, 4532-4546
   Abstract »    Full Text »    PDF »
Targeting Ovarian Cancer and Chemoresistance Through Selective Inhibition of Sphingosine Kinase-2 with ABC294640.
M. D. WHITE, L. CHAN, J. W. ANTOON, and B. S. BECKMAN (2013)
Anticancer Res 33, 3573-3579
   Abstract »    Full Text »    PDF »
Sphingolipids: regulators of crosstalk between apoptosis and autophagy.
M. M. Young, M. Kester, and H.-G. Wang (2013)
J. Lipid Res. 54, 5-19
   Abstract »    Full Text »    PDF »
Ablation of Sphingosine Kinase-2 Inhibits Tumor Cell Proliferation and Migration.
P. Gao and C. D. Smith (2011)
Mol. Cancer Res. 9, 1509-1519
   Abstract »    Full Text »    PDF »
BACE1 Activity Is Modulated by Cell-Associated Sphingosine-1-Phosphate.
N. Takasugi, T. Sasaki, K. Suzuki, S. Osawa, H. Isshiki, Y. Hori, N. Shimada, T. Higo, S. Yokoshima, T. Fukuyama, et al. (2011)
J. Neurosci. 31, 6850-6857
   Abstract »    Full Text »    PDF »
ATP-independent glucose stimulation of sphingosine kinase in rat pancreatic islets.
L. D. Mastrandrea, S. M. Sessanna, A. Del Toro, and S. G. Laychock (2010)
J. Lipid Res. 51, 2171-2180
   Abstract »    Full Text »    PDF »
Regulating survival and development in the retina: key roles for simple sphingolipids.
N. P. Rotstein, G. E. Miranda, C. E. Abrahan, and O. L. German (2010)
J. Lipid Res. 51, 1247-1262
   Abstract »    Full Text »    PDF »
A Novel Mitochondrial Sphingomyelinase in Zebrafish Cells.
T. Yabu, A. Shimuzu, and M. Yamashita (2009)
J. Biol. Chem. 284, 20349-20363
   Abstract »    Full Text »    PDF »
FHL-2 Suppresses VEGF-Induced Phosphatidylinositol 3-Kinase/Akt Activation via Interaction With Sphingosine Kinase-1.
H. Hayashi, H. Nakagami, Y. Takami, H. Koriyama, M. Mori, K. Tamai, J. Sun, K. Nagao, R. Morishita, and Y. Kaneda (2009)
Arterioscler Thromb Vasc Biol 29, 909-914
   Abstract »    Full Text »    PDF »
Sphingosine kinase regulation and cardioprotection.
J. S. Karliner (2009)
Cardiovasc Res 82, 184-192
   Abstract »    Full Text »    PDF »
Subcellular Origin of Sphingosine 1-Phosphate Is Essential for Its Toxic Effect in Lyase-deficient Neurons.
N. Hagen, P. P. Van Veldhoven, R. L. Proia, H. Park, A. H. Merrill Jr., and G. van Echten-Deckert (2009)
J. Biol. Chem. 284, 11346-11353
   Abstract »    Full Text »    PDF »
Sphingosine Kinase Isoforms Regulate Oxaliplatin Sensitivity of Human Colon Cancer Cells through Ceramide Accumulation and Akt Activation.
S. Nemoto, M. Nakamura, Y. Osawa, S. Kono, Y. Itoh, Y. Okano, T. Murate, A. Hara, H. Ueda, Y. Nozawa, et al. (2009)
J. Biol. Chem. 284, 10422-10432
   Abstract »    Full Text »    PDF »
Differential regulation of sphingosine kinases 1 and 2 in lung injury.
R. Wadgaonkar, V. Patel, N. Grinkina, C. Romano, J. Liu, Y. Zhao, S. Sammani, J. G. N. Garcia, and V. Natarajan (2009)
Am J Physiol Lung Cell Mol Physiol 296, L603-L613
   Abstract »    Full Text »    PDF »
Sphingolipid signaling and treatment during remodeling of the uninfarcted ventricular wall after myocardial infarction.
C.-C. Yeh, H. Li, D. Malhotra, M.-C. Huang, B.-Q. Zhu, E. J. Goetzl, D. A. Vessey, J. S. Karliner, and M. J. Mann (2009)
Am J Physiol Heart Circ Physiol 296, H1193-H1199
   Abstract »    Full Text »    PDF »
Hypoxia Enhances Sphingosine Kinase 2 Activity and Provokes Sphingosine-1-Phosphate-Mediated Chemoresistance in A549 Lung Cancer Cells.
S. E. Schnitzer, A. Weigert, J. Zhou, and B. Brune (2009)
Mol. Cancer Res. 7, 393-401
   Abstract »    Full Text »    PDF »
A role for sphingosine kinase 1 in dextran sulfate sodium-induced colitis.
A. J. Snider, T. Kawamori, S. G. Bradshaw, K. A. Orr, G. S. Gilkeson, Y. A. Hannun, and L. M. Obeid (2009)
FASEB J 23, 143-152
   Abstract »    Full Text »    PDF »
Thematic Review Series: Sphingolipids. Cross-talk at the crossroads of sphingosine-1-phosphate, growth factors, and cytokine signaling.
D. A. Lebman and S. Spiegel (2008)
J. Lipid Res. 49, 1388-1394
   Abstract »    Full Text »    PDF »
Caspase Cleavage of HER-2 Releases a Bad-like Cell Death Effector.
A. M. Strohecker, F. Yehiely, F. Chen, and V. L. Cryns (2008)
J. Biol. Chem. 283, 18269-18282
   Abstract »    Full Text »    PDF »
Sphingosine Kinase 1 Is Up-regulated during Hypoxia in U87MG Glioma Cells: ROLE OF HYPOXIA-INDUCIBLE FACTORS 1 AND 2.
V. Anelli, C. R. Gault, A. B. Cheng, and L. M. Obeid (2008)
J. Biol. Chem. 283, 3365-3375
   Abstract »    Full Text »    PDF »
Involvement of Sphingosine Kinase 2 in p53-Independent Induction of p21 by the Chemotherapeutic Drug Doxorubicin.
H. M. Sankala, N. C. Hait, S. W. Paugh, D. Shida, S. Lepine, L. W. Elmore, P. Dent, S. Milstien, and S. Spiegel (2007)
Cancer Res. 67, 10466-10474
   Abstract »    Full Text »    PDF »
Cutting Edge: Modulation of Intestinal Autoimmunity and IL-2 Signaling by Sphingosine Kinase 2 Independent of Sphingosine 1-Phosphate.
E. T. Samy, C. A. Meyer, P. Caplazi, C. L. Langrish, J. M. Lora, H. Bluethmann, and S. L. Peng (2007)
J. Immunol. 179, 5644-5648
   Abstract »    Full Text »    PDF »
A sphingosine kinase 1 mutation sensitizes the myocardium to ischemia/reperfusion injury.
Z.-Q. Jin, J. Zhang, Y. Huang, H. E. Hoover, D. A. Vessey, and J. S. Karliner (2007)
Cardiovasc Res 76, 41-50
   Abstract »    Full Text »    PDF »
Protein Kinase D-mediated Phosphorylation and Nuclear Export of Sphingosine Kinase 2.
G. Ding, H. Sonoda, H. Yu, T. Kajimoto, S. K. Goparaju, S. Jahangeer, T. Okada, and S.-i. Nakamura (2007)
J. Biol. Chem. 282, 27493-27502
   Abstract »    Full Text »    PDF »
(Dihydro)ceramide Synthase 1 Regulated Sensitivity to Cisplatin Is Associated with the Activation of p38 Mitogen-Activated Protein Kinase and Is Abrogated by Sphingosine Kinase 1.
J. Min, A. Mesika, M. Sivaguru, P. P. Van Veldhoven, H. Alexander, A. H. Futerman, and S. Alexander (2007)
Mol. Cancer Res. 5, 801-812
   Abstract »    Full Text »    PDF »
The sphingosine 1-phosphate receptor S1P2 triggers hepatic wound healing.
V. Serriere-Lanneau, F. Teixeira-Clerc, L. Li, M. Schippers, W. de Wries, B. Julien, J. Tran-Van-Nhieu, S. Manin, K. Poelstra, J. Chun, et al. (2007)
FASEB J 21, 2005-2013
   Abstract »    Full Text »    PDF »
Essential Requirement for Sphingosine Kinase 2 in a Sphingolipid Apoptosis Pathway Activated by FTY720 Analogues.
A. S. Don, C. Martinez-Lamenca, W. R. Webb, R. L. Proia, E. Roberts, and H. Rosen (2007)
J. Biol. Chem. 282, 15833-15842
   Abstract »    Full Text »    PDF »
Activation of Sphingosine Kinase-1 Mediates Inhibition of Vascular Smooth Muscle Cell Apoptosis by Hyperglycemia.
B. You, A. Ren, G. Yan, and J. Sun (2007)
Diabetes 56, 1445-1453
   Abstract »    Full Text »    PDF »
Sphingosine Kinase Type 2 Activation by ERK-mediated Phosphorylation.
N. C. Hait, A. Bellamy, S. Milstien, T. Kordula, and S. Spiegel (2007)
J. Biol. Chem. 282, 12058-12065
   Abstract »    Full Text »    PDF »
Deletion of the Sphingosine Kinase-1 gene influences cell fate during hypoxia and glucose deprivation in adult mouse cardiomyocytes.
R. Tao, J. Zhang, D. A. Vessey, N. Honbo, and J. S. Karliner (2007)
Cardiovasc Res 74, 56-63
   Abstract »    Full Text »    PDF »
Functions of the Multifaceted Family of Sphingosine Kinases and Some Close Relatives.
S. Spiegel and S. Milstien (2007)
J. Biol. Chem. 282, 2125-2129
   Full Text »    PDF »
FHL2/SLIM3 Decreases Cardiomyocyte Survival by Inhibitory Interaction With Sphingosine Kinase-1.
J. Sun, G. Yan, A. Ren, B. You, and J. K. Liao (2006)
Circ. Res. 99, 468-476
   Abstract »    Full Text »    PDF »
Apoptotic cells promote macrophage survival by releasing the antiapoptotic mediator sphingosine-1-phosphate.
A. Weigert, A. M. Johann, A. von Knethen, H. Schmidt, G. Geisslinger, and B. Brune (2006)
Blood 108, 1635-1642
   Abstract »    Full Text »    PDF »
The Calmodulin-binding Site of Sphingosine Kinase and Its Role in Agonist-dependent Translocation of Sphingosine Kinase 1 to the Plasma Membrane.
C. M. Sutherland, P. A. B. Moretti, N. M. Hewitt, C. J. Bagley, M. A. Vadas, and S. M. Pitson (2006)
J. Biol. Chem. 281, 11693-11701
   Abstract »    Full Text »    PDF »
Essential Role for Sphingosine Kinases in Neural and Vascular Development.
K. Mizugishi, T. Yamashita, A. Olivera, G. F. Miller, S. Spiegel, and R. L. Proia (2005)
Mol. Cell. Biol. 25, 11113-11121
   Abstract »    Full Text »    PDF »
SphK1 and SphK2, Sphingosine Kinase Isoenzymes with Opposing Functions in Sphingolipid Metabolism.
M. Maceyka, H. Sankala, N. C. Hait, H. Le Stunff, H. Liu, R. Toman, C. Collier, M. Zhang, L. S. Satin, A. H. Merrill Jr., et al. (2005)
J. Biol. Chem. 280, 37118-37129
   Abstract »    Full Text »    PDF »
Involvement of N-terminal-extended Form of Sphingosine Kinase 2 in Serum-dependent Regulation of Cell Proliferation and Apoptosis.
T. Okada, G. Ding, H. Sonoda, T. Kajimoto, Y. Haga, A. Khosrowbeygi, S. Gao, N. Miwa, S. Jahangeer, and S.-i. Nakamura (2005)
J. Biol. Chem. 280, 36318-36325
   Abstract »    Full Text »    PDF »
Immunohistochemical Distribution of Sphingosine Kinase 1 in Normal and Tumor Lung Tissue.
K. R. Johnson, K. Y. Johnson, H. G. Crellin, B. Ogretmen, A. M. Boylan, R. A. Harley, and L. M. Obeid (2005)
Journal of Histochemistry & Cytochemistry 53, 1159-1166
   Abstract »    Full Text »    PDF »
Role of Sphingosine Kinase 2 in Cell Migration toward Epidermal Growth Factor.
N. C. Hait, S. Sarkar, H. Le Stunff, A. Mikami, M. Maceyka, S. Milstien, and S. Spiegel (2005)
J. Biol. Chem. 280, 29462-29469
   Abstract »    Full Text »    PDF »
The S1P2 Receptor Negatively Regulates Platelet-Derived Growth Factor-Induced Motility and Proliferation.
S. K. Goparaju, P. S. Jolly, K. R. Watterson, M. Bektas, S. Alvarez, S. Sarkar, L. Mel, I. Ishii, J. Chun, S. Milstien, et al. (2005)
Mol. Cell. Biol. 25, 4237-4249
   Abstract »    Full Text »    PDF »
Sphingosine Kinase Activity and Sphingosine-1 Phosphate Production in Rat Pancreatic Islets and INS-1 Cells: Response to Cytokines.
L. D. Mastrandrea, S. M. Sessanna, and S. G. Laychock (2005)
Diabetes 54, 1429-1436
   Abstract »    Full Text »    PDF »
Arabidopsis Sphingosine Kinase and the Effects of Phytosphingosine-1-Phosphate on Stomatal Aperture.
S. Coursol, H. Le Stunff, D. V. Lynch, S. Gilroy, S. M. Assmann, and S. Spiegel (2005)
Plant Physiology 137, 724-737
   Abstract »    Full Text »    PDF »
Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling.
S. M. Pitson, P. Xia, T. M. Leclercq, P. A.B. Moretti, J. R. Zebol, H. E. Lynn, B. W. Wattenberg, and M. A. Vadas (2005)
J. Exp. Med. 201, 49-54
   Abstract »    Full Text »    PDF »
Sphingosine Kinase Regulates the Sensitivity of Dictyostelium discoideum Cells to the Anticancer Drug Cisplatin.
J. Min, D. Traynor, A. L. Stegner, L. Zhang, M. H. Hanigan, H. Alexander, and S. Alexander (2005)
Eukaryot. Cell 4, 178-189
   Abstract »    Full Text »    PDF »
Sphingosine Kinase 1 (SPHK1) Is Induced by Transforming Growth Factor-{beta} and Mediates TIMP-1 Up-regulation.
M. Yamanaka, D. Shegogue, H. Pei, S. Bu, A. Bielawska, J. Bielawski, B. Pettus, Y. A. Hannun, L. Obeid, and M. Trojanowska (2004)
J. Biol. Chem. 279, 53994-54001
   Abstract »    Full Text »    PDF »
Transactivation of Sphingosine-1-Phosphate Receptors by Fc{varepsilon}RI Triggering Is Required for Normal Mast Cell Degranulation and Chemotaxis.
P. S. Jolly, M. Bektas, A. Olivera, C. Gonzalez-Espinosa, R. L. Proia, J. Rivera, S. Milstien, and S. Spiegel (2004)
J. Exp. Med. 199, 959-970
   Abstract »    Full Text »    PDF »
Point-Counterpoint of Sphingosine 1-Phosphate Metabolism.
J. D. Saba and T. Hla (2004)
Circ. Res. 94, 724-734
   Abstract »    Full Text »    PDF »
Characterization of the Drosophila Sphingosine Kinases and Requirement for Sk2 in Normal Reproductive Function.
D. R. Herr, H. Fyrst, M. B. Creason, V. H. Phan, J. D. Saba, and G. L. Harris (2004)
J. Biol. Chem. 279, 12685-12694
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882