Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Biol. Chem. 278 (47): 46506-46515

© 2003 by The American Society for Biochemistry and Molecular Biology, Inc.

Regulators of G Protein Signaling and Transient Activation of Signaling

EXPERIMENTAL AND COMPUTATIONAL ANALYSIS REVEALS NEGATIVE AND POSITIVE FEEDBACK CONTROLS ON G PROTEIN ACTIVITY*

Nan Hao{ddagger}, Necmettin Yildirim§, Yuqi Wang{ddagger}, Timothy C. Elston§¶, , and Henrik G. Dohlman{ddagger}||

{ddagger}Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-0812 and the §Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599-3250

Abstract: Cellular responses to hormones and neurotransmitters are necessarily transient. The mating pheromone signal in yeast is typical. Signal initiation requires cell surface receptors, a G protein heterotrimer, and down-stream effectors. Signal inactivation requires Sst2, a regulator of G protein signaling (RGS) protein that accelerates GTPase activity. We conducted a quantitative analysis of RGS and G protein expression and devised computational models that describe their activity in vivo. These results indicated that pheromone-dependent transcriptional induction of the RGS protein constitutes a negative feedback loop that leads to desensitization. Modeling also suggested the presence of a positive feedback loop leading to resensitization of the pathway. In confirmation of the model, we found that the RGS protein is ubiquitinated and degraded in response to pheromone stimulation. We identified and quantitated these positive and negative feedback loops, which account for the transient response to external signals observed in vivo.


Received for publication August 1, 2003.

* This work was supported by National Institutes of Health Grants GM55316 and GM59167 (to H. G. D.), by American Heart Association Fellowship 0225390U (to Y. W.), and by Defense Advanced Research Projects Agency Grant F30602-01-2-0579 (to T. C. E. and N. Y.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

To whom correspondence may be addressed. E-mail: telston{at}amath.unc.edu. || To whom correspondence may be addressed. E-mail: hdohlman{at}med.unc.edu.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
A Physiologically Required G Protein-coupled Receptor (GPCR)-Regulator of G Protein Signaling (RGS) Interaction That Compartmentalizes RGS Activity.
W. Croft, C. Hill, E. McCann, M. Bond, M. Esparza-Franco, J. Bennett, D. Rand, J. Davey, and G. Ladds (2013)
J. Biol. Chem. 288, 27327-27342
   Abstract »    Full Text »    PDF »
Dynamic Ubiquitination of the Mitogen-activated Protein Kinase Kinase (MAPKK) Ste7 Determines Mitogen-activated Protein Kinase (MAPK) Specificity.
J. H. Hurst and H. G. Dohlman (2013)
J. Biol. Chem. 288, 18660-18671
   Abstract »    Full Text »    PDF »
The Salmonella Typhimurium effector SteC inhibits Cdc42-mediated signaling through binding to the exchange factor Cdc24 in Saccharomyces cerevisiae.
P. Fernandez-Pinar, A. Aleman, J. Sondek, H. G. Dohlman, M. Molina, and H. Martin (2012)
Mol. Biol. Cell 23, 4430-4443
   Abstract »    Full Text »    PDF »
Functional and Physical Interactions among Saccharomyces cerevisiae {alpha}-Factor Receptors.
A. U. Gehret, S. M. Connelly, and M. E. Dumont (2012)
Eukaryot. Cell 11, 1276-1288
   Abstract »    Full Text »    PDF »
Combined computational and experimental analysis reveals mitogen-activated protein kinase-mediated feedback phosphorylation as a mechanism for signaling specificity.
N. Hao, N. Yildirim, M. J. Nagiec, S. C. Parnell, B. Errede, H. G. Dohlman, and T. C. Elston (2012)
Mol. Biol. Cell 23, 3899-3910
   Abstract »    Full Text »    PDF »
Scaffold number in yeast signaling system sets tradeoff between system output and dynamic range.
T. M. Thomson, K. R. Benjamin, A. Bush, T. Love, D. Pincus, O. Resnekov, R. C. Yu, A. Gordon, A. Colman-Lerner, D. Endy, et al. (2011)
PNAS 108, 20265-20270
   Abstract »    Full Text »    PDF »
Pheromone- and RSP5-dependent Ubiquitination of the G Protein {beta} Subunit Ste4 in Yeast.
M. Zhu, M. P. Torres, J. B. Kelley, H. G. Dohlman, and Y. Wang (2011)
J. Biol. Chem. 286, 27147-27155
   Abstract »    Full Text »    PDF »
Cell Cycle-dependent Phosphorylation and Ubiquitination of a G Protein {alpha} Subunit.
M. P. Torres, S. T. Clement, S. D. Cappell, and H. G. Dohlman (2011)
J. Biol. Chem. 286, 20208-20216
   Abstract »    Full Text »    PDF »
Kinetics of M1 muscarinic receptor and G protein signaling to phospholipase C in living cells.
B. H. Falkenburger, J. B. Jensen, and B. Hille (2010)
J. Gen. Physiol. 135, 81-97
   Abstract »    Full Text »    PDF »
G Protein Mono-ubiquitination by the Rsp5 Ubiquitin Ligase.
M. P. Torres, M. J. Lee, F. Ding, C. Purbeck, B. Kuhlman, N. V. Dokholyan, and H. G. Dohlman (2009)
J. Biol. Chem. 284, 8940-8950
   Abstract »    Full Text »    PDF »
Modeling of G-protein-coupled Receptor Signaling Pathways.
J. J. Linderman (2009)
J. Biol. Chem. 284, 5427-5431
   Full Text »    PDF »
Regulation of G Protein and Mitogen-Activated Protein Kinase Signaling by Ubiquitination: Insights From Model Organisms.
Y. Wang and H. G. Dohlman (2006)
Circ. Res. 99, 1305-1314
   Abstract »    Full Text »    PDF »
Pheromone-Induced Degradation of Ste12 Contributes to Signal Attenuation and the Specificity of Developmental Fate.
R. K. Esch, Y. Wang, and B. Errede (2006)
Eukaryot. Cell 5, 2147-2160
   Abstract »    Full Text »    PDF »
The Ste5 Scaffold Allosterically Modulates Signaling Output of the Yeast Mating Pathway.
R. P. Bhattacharyya, A. Remenyi, M. C. Good, C. J. Bashor, A. M. Falick, and W. A. Lim (2006)
Science 311, 822-826
   Abstract »    Full Text »    PDF »
Genome-Scale Analysis Reveals Sst2 as the Principal Regulator of Mating Pheromone Signaling in the Yeast Saccharomyces cerevisiae.
S. A. Chasse, P. Flanary, S. C. Parnell, N. Hao, J. Y. Cha, D. P. Siderovski, and H. G. Dohlman (2006)
Eukaryot. Cell 5, 330-346
   Abstract »    Full Text »    PDF »
Pheromone-regulated Sumoylation of Transcription Factors That Mediate the Invasive to Mating Developmental Switch in Yeast.
Y. Wang and H. G. Dohlman (2006)
J. Biol. Chem. 281, 1964-1969
   Abstract »    Full Text »    PDF »
Functional Selectivity of G Protein Signaling by Agonist Peptides and Thrombin for the Protease-activated Receptor-1.
J. N. McLaughlin, L. Shen, M. Holinstat, J. D. Brooks, E. DiBenedetto, and H. E. Hamm (2005)
J. Biol. Chem. 280, 25048-25059
   Abstract »    Full Text »    PDF »
Except in Every Detail: Comparing and Contrasting G-Protein Signaling in Saccharomyces cerevisiae and Schizosaccharomyces pombe.
C. S. Hoffman (2005)
Eukaryot. Cell 4, 495-503
   Full Text »    PDF »
Differential Regulation of G Protein {alpha} Subunit Trafficking by Mono- and Polyubiquitination.
Y. Wang, L. A. Marotti Jr., M. J. Lee, and H. G. Dohlman (2005)
J. Biol. Chem. 280, 284-291
   Abstract »    Full Text »    PDF »
Computational modeling reveals how interplay between components of a GTPase-cycle module regulates signal transduction.
S. J. Bornheimer, M. R. Maurya, M. G. Farquhar, and S. Subramaniam (2004)
PNAS 101, 15899-15904
   Abstract »    Full Text »    PDF »
A Functional Polymorphism in RGS6 Modulates the Risk of Bladder Cancer.
D. M. Berman, Y. Wang, Z. Liu, Q. Dong, L.-A. Burke, L. A. Liotta, R. Fisher, and X. Wu (2004)
Cancer Res. 64, 6820-6826
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882