Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Biol. Chem. 278 (51): 51334-51339

© 2003 by The American Society for Biochemistry and Molecular Biology, Inc.

β-Arrestin1 Mediates Insulin-like Growth Factor 1 (IGF-1) Activation of Phosphatidylinositol 3-Kinase (PI3K) and Anti-apoptosis*

Thomas J. Povsic{ddagger}§, Trudy A. Kohout, , and Robert J. Lefkowitz||**

Division of Cardiology and the Howard Hughes Medical Institute, Department of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710 and Neurocrine Biosciences Incorporated, San Diego, California 92121

Abstract: β-arrestins (1 and 2) are widely expressed cytosolic proteins that play central roles in G protein-coupled receptor signaling. β-arrestin1 is also recruited to the insulin-like growth factor 1 (IGF-1) receptor, a receptor tyrosine kinase, upon agonist binding. Here we report that, in response to IGF-1 stimulation, β-arrestin1 mediates activation of phosphatidylinositol 3-kinase in a pathway that leads to the subsequent activation of Akt and anti-apoptosis. This process is independent of both Gi and ERK activity. The pathway fails in mouse embryo fibroblasts lacking both β-arrestins and is restored by stable transfection of β-arrestin1. Remarkably, this pathway is insensitive to chemical inhibition of IGF-1 receptor tyrosine kinase activity. These results suggest that, in addition to their roles in G protein-coupled receptor signaling, β-arrestins couple the IGF-1 receptor tyrosine kinase to the phosphatidylinositol 3-kinase system and suggest that this mechanism is operative independently of the tyrosine kinase activity of the receptor.

Received for publication September 8, 2003. Revision received October 6, 2003.

** Investigator of the Howard Hughes Medical Center, funded in part by National Institutes of Health Grants HL 16037 and HL 70631, and to whom correspondence should be addressed: Howard Hughes Medical Inst., Dept. of Medicine and Biochemistry, Box 3821, Duke University Medical Center, Durham, NC 27710. Tel.: 919-684-2974; Fax: 919-684-8875; E-mail: lefko001{at}

A Novel Noncanonical Signaling Pathway for the {micro}-Opioid Receptor.
L. Zhang, H. H. Loh, and P.-Y. Law (2013)
Mol. Pharmacol. 84, 844-853
   Abstract »    Full Text »    PDF »
{beta}-Arrestins 1 and 2 are critical regulators of inflammation.
H. Fan (2013)
Innate Immunity
   Abstract »    Full Text »    PDF »
Distinct Roles of {beta}-Arrestin 1 and {beta}-Arrestin 2 in ORG27569-induced Biased Signaling and Internalization of the Cannabinoid Receptor 1 (CB1).
K. H. Ahn, M. M. Mahmoud, J.-Y. Shim, and D. A. Kendall (2013)
J. Biol. Chem. 288, 9790-9800
   Abstract »    Full Text »    PDF »
Regulatory role of {beta}-arrestin-2 in cholesterol processing in cystic fibrosis epithelial cells.
M. E. Manson, D. A. Corey, I. Bederman, J. D. Burgess, and T. J. Kelley (2012)
J. Lipid Res. 53, 1268-1276
   Abstract »    Full Text »    PDF »
Selective recruitment of G protein-coupled receptor kinases (GRKs) controls signaling of the insulin-like growth factor 1 receptor.
H. Zheng, C. Worrall, H. Shen, T. Issad, S. Seregard, A. Girnita, and L. Girnita (2012)
PNAS 109, 7055-7060
   Abstract »    Full Text »    PDF »
Engagement of {beta}-arrestin by transactivated insulin-like growth factor receptor is needed for V2 vasopressin receptor-stimulated ERK1/2 activation.
G. Oligny-Longpre, M. Corbani, J. Zhou, M. Hogue, G. Guillon, and M. Bouvier (2012)
PNAS 109, E1028-E1037
   Abstract »    Full Text »    PDF »
Identification of a Nuclear Localization Sequence in {beta}-Arrestin-1 and Its Functional Implications.
C. Z. Hoeppner, N. Cheng, and R. D. Ye (2012)
J. Biol. Chem. 287, 8932-8943
   Abstract »    Full Text »    PDF »
{beta}-Arrestin-Dependent Actin Reorganization: Bringing the Right Players Together at the Leading Edge.
J. Min and K. DeFea (2011)
Mol. Pharmacol. 80, 760-768
   Abstract »    Full Text »    PDF »
Distinct functional outputs of PTEN signalling are controlled by dynamic association with {beta}-arrestins.
E. Lima-Fernandes, H. Enslen, E. Camand, L. Kotelevets, C. Boularan, L. Achour, A. Benmerah, L. C. D. Gibson, G. S. Baillie, J. A. Pitcher, et al. (2011)
EMBO J. 30, 2557-2568
   Abstract »    Full Text »    PDF »
Arrestin and the Multi-PDZ Domain-containing Protein MPZ-1 Interact with Phosphatase and Tensin Homolog (PTEN) and Regulate Caenorhabditis elegans Longevity.
A. Palmitessa and J. L. Benovic (2010)
J. Biol. Chem. 285, 15187-15200
   Abstract »    Full Text »    PDF »
Cross Talk between Phosphatidylinositol 3-Kinase and Cyclic AMP (cAMP)-Protein Kinase A Signaling Pathways at the Level of a Protein Kinase B/{beta}-Arrestin/cAMP Phosphodiesterase 4 Complex.
E. Bjorgo, S. A. Solheim, H. Abrahamsen, G. S. Baillie, K. M. Brown, T. Berge, K. Okkenhaug, M. D. Houslay, and K. Tasken (2010)
Mol. Cell. Biol. 30, 1660-1672
   Abstract »    Full Text »    PDF »
{beta}-Arrestin 2 is required for the induction and strengthening of integrin-mediated leukocyte adhesion during CXCR2-driven extravasation.
R. Molteni, C. L. Crespo, S. Feigelson, C. Moser, M. Fabbri, V. Grabovsky, F. Krombach, C. Laudanna, R. Alon, and R. Pardi (2009)
Blood 114, 1073-1082
   Abstract »    Full Text »    PDF »
The 27-kDa Heat Shock Protein Confers Cytoprotective Effects through a {beta}2-Adrenergic Receptor Agonist-Initiated Complex with {beta}-Arrestin.
L. Rojanathammanee, E. B. Harmon, L. A. Grisanti, P. Govitrapong, M. Ebadi, B. D. Grove, M. Miyagi, and J. E. Porter (2009)
Mol. Pharmacol. 75, 855-865
   Abstract »    Full Text »    PDF »
{beta}-Arrestin-2 Mediates Anti-apoptotic Signaling through Regulation of BAD Phosphorylation.
S. Ahn, J. Kim, M. R. Hara, X.-R. Ren, and R. J. Lefkowitz (2009)
J. Biol. Chem. 284, 8855-8865
   Abstract »    Full Text »    PDF »
Akt and ERK1/2 pathways are components of the vasopressin signaling network in rat native IMCD.
T. Pisitkun, V. Jacob, S. M. Schleicher, C.-L. Chou, M.-J. Yu, and M. A. Knepper (2008)
Am J Physiol Renal Physiol 295, F1030-F1043
   Abstract »    Full Text »    PDF »
{beta}-Arrestin Scaffolding of Phosphatidylinositol 4-Phosphate 5-Kinase I{alpha} Promotes Agonist-stimulated Sequestration of the {beta}2-Adrenergic Receptor.
C. D. Nelson, J. J. Kovacs, K. N. Nobles, E. J. Whalen, and R. J. Lefkowitz (2008)
J. Biol. Chem. 283, 21093-21101
   Abstract »    Full Text »    PDF »
{beta}-Arrestin-mediated Signaling Regulates Protein Synthesis.
S. M. DeWire, J. Kim, E. J. Whalen, S. Ahn, M. Chen, and R. J. Lefkowitz (2008)
J. Biol. Chem. 283, 10611-10620
   Abstract »    Full Text »    PDF »
Rapid xenograft tumor progression in beta-arrestin1 transgenic mice due to enhanced tumor angiogenesis.
L. Zou, R. Yang, J. Chai, and G. Pei (2008)
FASEB J 22, 355-364
   Abstract »    Full Text »    PDF »
A unique mechanism of beta-blocker action: Carvedilol stimulates beta-arrestin signaling.
J. W. Wisler, S. M. DeWire, E. J. Whalen, J. D. Violin, M. T. Drake, S. Ahn, S. K. Shenoy, and R. J. Lefkowitz (2007)
PNAS 104, 16657-16662
   Abstract »    Full Text »    PDF »
K. N. Nobles, Z. Guan, K. Xiao, T. G. Oas, and R. J. Lefkowitz (2007)
J. Biol. Chem. 282, 21370-21381
   Abstract »    Full Text »    PDF »
beta-Arrestin-dependent Regulation of the Cofilin Pathway Downstream of Protease-activated Receptor-2.
M. Zoudilova, P. Kumar, L. Ge, P. Wang, G. M. Bokoch, and K. A. DeFea (2007)
J. Biol. Chem. 282, 20634-20646
   Abstract »    Full Text »    PDF »
beta-Arrestin2-mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes.
K. Rajagopal, E. J. Whalen, J. D. Violin, J. A. Stiber, P. B. Rosenberg, R. T. Premont, T. M. Coffman, H. A. Rockman, and R. J. Lefkowitz (2006)
PNAS 103, 16284-16289
   Abstract »    Full Text »    PDF »
Insulin-like Growth Factors Mediate Heterotrimeric G Protein-dependent ERK1/2 Activation by Transactivating Sphingosine 1-Phosphate Receptors.
H. M. El-Shewy, K. R. Johnson, M.-H. Lee, A. A. Jaffa, L. M. Obeid, and L. M. Luttrell (2006)
J. Biol. Chem. 281, 31399-31407
   Abstract »    Full Text »    PDF »
R7BP Augments the Function of RGS7{middle dot}Gbeta5 Complexes by a Plasma Membrane-targeting Mechanism.
R. M. Drenan, C. A. Doupnik, M. Jayaraman, A. L. Buchwalter, K. M. Kaltenbronn, J. E. Huettner, M. E. Linder, and K. J. Blumer (2006)
J. Biol. Chem. 281, 28222-28231
   Abstract »    Full Text »    PDF »
{beta}-Arrestin2 functions as a phosphorylation-regulated suppressor of UV-induced NF-{kappa}B activation.
B. Luan, Z. Zhang, Y. Wu, J. Kang, and G. Pei (2005)
EMBO J. 24, 4237-4246
   Abstract »    Full Text »    PDF »
Seven-Transmembrane Receptor Signaling Through {beta}-Arrestin.
S. K. Shenoy and R. J. Lefkowitz (2005)
Sci. STKE 2005, cm10
   Abstract »    Full Text »    PDF »
Activation of Mammalian Target of Rapamycin in Transformed B Lymphocytes Is Nutrient Dependent but Independent of Akt, Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Kinase, Insulin Growth Factor-I, and Serum.
P. Wlodarski, M. Kasprzycka, X. Liu, M. Marzec, E. S. Robertson, A. Slupianek, and M. A. Wasik (2005)
Cancer Res. 65, 7800-7808
   Abstract »    Full Text »    PDF »
{beta}-Arrestin Is Crucial for Ubiquitination and Down-regulation of the Insulin-like Growth Factor-1 Receptor by Acting as Adaptor for the MDM2 E3 Ligase.
L. Girnita, S. K. Shenoy, B. Sehat, R. Vasilcanu, A. Girnita, R. J. Lefkowitz, and O. Larsson (2005)
J. Biol. Chem. 280, 24412-24419
   Abstract »    Full Text »    PDF »
Transduction of Receptor Signals by {beta}-Arrestins.
R. J. Lefkowitz and S. K. Shenoy (2005)
Science 308, 512-517
   Abstract »    Full Text »    PDF »
{beta}-Arrestin 1 and G{alpha}q/11 Coordinately Activate RhoA and Stress Fiber Formation following Receptor Stimulation.
W. G. Barnes, E. Reiter, J. D. Violin, X.-R. Ren, G. Milligan, and R. J. Lefkowitz (2005)
J. Biol. Chem. 280, 8041-8050
   Abstract »    Full Text »    PDF »
Arrestin Regulates MAPK Activation and Prevents NADPH Oxidase-dependent Death of Cells Expressing CXCR2.
M. Zhao, A. Wimmer, K. Trieu, R. G. DiScipio, and I. U. Schraufstatter (2004)
J. Biol. Chem. 279, 49259-49267
   Abstract »    Full Text »    PDF »
{beta}-Arrestin inhibits NF-{kappa}B activity by means of its interaction with the NF-{kappa}B inhibitor I{kappa}B{alpha}.
D. S. Witherow, T. R. Garrison, W. E. Miller, and R. J. Lefkowitz (2004)
PNAS 101, 8603-8607
   Abstract »    Full Text »    PDF »
Arrestins Block G Protein-coupled Receptor-mediated Apoptosis.
C. M. Revankar, C. M. Vines, D. F. Cimino, and E. R. Prossnitz (2004)
J. Biol. Chem. 279, 24578-24584
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882